Image captioning is conventionally formulated as the task of generating captions for images that match the distribution of reference image-caption pairs. However, reference captions in standard captioning datasets are short and may not uniquely identify the images they describe. These problems are further exacerbated when models are trained directly on image-alt text pairs collected from the internet. In this work, we show that it is possible to generate more specific captions with minimal changes to the training process. We implement classifier-free guidance for an autoregressive captioning model by fine-tuning it to estimate both conditional and unconditional distributions over captions. The guidance scale applied at decoding controls a trade-off between maximizing $p(\mathrm{caption}|\mathrm{image})$ and $p(\mathrm{image}|\mathrm{caption})$. Compared to standard greedy decoding, decoding with a guidance scale of 2 substantially improves reference-free metrics such as CLIPScore (0.808 vs. 0.775) and caption$\to$image retrieval performance in the CLIP embedding space (recall@1 44.6% vs. 26.5%), but worsens standard reference-based captioning metrics (e.g., CIDEr 78.6 vs 126.1). We further explore the use of language models to guide the decoding process, obtaining small improvements over the Pareto frontier of reference-free vs. reference-based captioning metrics that arises from classifier-free guidance, and substantially improving the quality of captions generated from a model trained only on minimally curated web data.
A hypothesis class admits a sample compression scheme, if for every sample labeled by a hypothesis from the class, it is possible to retain only a small subsample, using which the labels on the entire sample can be inferred. The size of the compression scheme is an upper bound on the size of the subsample produced. Every learnable binary hypothesis class (which must necessarily have finite VC dimension) admits a sample compression scheme of size only a finite function of its VC dimension, independent of the sample size. For multiclass hypothesis classes, the analog of VC dimension is the DS dimension. We show that the analogous statement pertaining to sample compression is not true for multiclass hypothesis classes: every learnable multiclass hypothesis class, which must necessarily have finite DS dimension, does not admit a sample compression scheme of size only a finite function of its DS dimension.
Reference-based Text-to-Speech (TTS) models can generate multiple, prosodically-different renditions of the same target text. Such models jointly learn a latent acoustic space during training, which can be sampled from during inference. Controlling these models during inference typically requires finding an appropriate reference utterance, which is non-trivial. Large generative language models (LLMs) have shown excellent performance in various language-related tasks. Given only a natural language query text (the prompt), such models can be used to solve specific, context-dependent tasks. Recent work in TTS has attempted similar prompt-based control of novel speaking style generation. Those methods do not require a reference utterance and can, under ideal conditions, be controlled with only a prompt. But existing methods typically require a prompt-labelled speech corpus for jointly training a prompt-conditioned encoder. In contrast, we instead employ an LLM to directly suggest prosodic modifications for a controllable TTS model, using contextual information provided in the prompt. The prompt can be designed for a multitude of tasks. Here, we give two demonstrations: control of speaking style; prosody appropriate for a given dialogue context. The proposed method is rated most appropriate in 50% of cases vs. 31% for a baseline model.
Conditional diffusion models have demonstrated impressive performance on various tasks like text-guided semantic image editing. Prior work requires image regions to be identified manually by human users or use an object detector that only perform well for object-centric manipulations. For example, if an input image contains multiple objects with the same semantic meaning (such as a group of birds), object detectors may struggle to recognize and localize the target object, let alone accurately manipulate it. To address these challenges, we propose a two-stage method for achieving complex scene image editing by Scene Graph Comprehension (SGC-Net). In the first stage, we train a Region of Interest (RoI) prediction network that uses scene graphs and predict the locations of the target objects. Unlike object detection methods based solely on object category, our method can accurately recognize the target object by comprehending the objects and their semantic relationships within a complex scene. The second stage uses a conditional diffusion model to edit the image based on our RoI predictions. We evaluate the effectiveness of our approach on the CLEVR and Visual Genome datasets. We report an 8 point improvement in SSIM on CLEVR and our edited images were preferred by human users by 9-33% over prior work on Visual Genome, validating the effectiveness of our proposed method. Code is available at github.com/Zhongping-Zhang/SGC_Net.
Feature preprocessing continues to play a critical role when applying machine learning and statistical methods to tabular data. In this paper, we propose the use of the kernel density integral transformation as a feature preprocessing step. Our approach subsumes the two leading feature preprocessing methods as limiting cases: linear min-max scaling and quantile transformation. We demonstrate that, without hyperparameter tuning, the kernel density integral transformation can be used as a simple drop-in replacement for either method, offering robustness to the weaknesses of each. Alternatively, with tuning of a single continuous hyperparameter, we frequently outperform both of these methods. Finally, we show that the kernel density transformation can be profitably applied to statistical data analysis, particularly in correlation analysis and univariate clustering.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.
Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.
Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.