亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Speech emotion recognition is crucial in human-computer interaction, but extracting and using emotional cues from audio poses challenges. This paper introduces MFHCA, a novel method for Speech Emotion Recognition using Multi-Spatial Fusion and Hierarchical Cooperative Attention on spectrograms and raw audio. We employ the Multi-Spatial Fusion module (MF) to efficiently identify emotion-related spectrogram regions and integrate Hubert features for higher-level acoustic information. Our approach also includes a Hierarchical Cooperative Attention module (HCA) to merge features from various auditory levels. We evaluate our method on the IEMOCAP dataset and achieve 2.6\% and 1.87\% improvements on the weighted accuracy and unweighted accuracy, respectively. Extensive experiments demonstrate the effectiveness of the proposed method.

相關內容

Multimodal large language models (MLLMs) have shown remarkable potential as human-like autonomous language agents to interact with real-world environments, especially for graphical user interface (GUI) automation. However, those GUI agents require comprehensive cognition ability including exhaustive perception and reliable action response. We propose a Comprehensive Cognitive LLM Agent, CoCo-Agent, with two novel approaches, comprehensive environment perception (CEP) and conditional action prediction (CAP), to systematically improve the GUI automation performance. First, CEP facilitates the GUI perception through different aspects and granularity, including screenshots and complementary detailed layouts for the visual channel and historical actions for the textual channel. Second, CAP decomposes the action prediction into sub-problems: action type prediction and action target conditioned on the action type. With our technical design, our agent achieves new state-of-the-art performance on AITW and META-GUI benchmarks, showing promising abilities in realistic scenarios. Code is available at //github.com/xbmxb/CoCo-Agent.

Deep models have recently emerged as a promising tool to solve partial differential equations (PDEs), known as neural PDE solvers. While neural solvers trained from either simulation data or physics-informed loss can solve the PDEs reasonably well, they are mainly restricted to a specific set of PDEs, e.g. a certain equation or a finite set of coefficients. This bottleneck limits the generalizability of neural solvers, which is widely recognized as its major advantage over numerical solvers. In this paper, we present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs by leveraging a Transformer pre-trained on diverse data and conditioned on diverse PDEs. Instead of simply scaling up data and parameters, Unisolver stems from the theoretical analysis of the PDE-solving process. Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components, e.g. equation symbols, coefficients, and initial and boundary conditions. Inspired by the mathematical structure of PDEs, we define a complete set of PDE components and correspondingly embed them as domain-wise (e.g. equation symbols) and point-wise (e.g. boundaries) conditions for Transformer PDE solvers. Integrating physical insights with recent Transformer advances, Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks, showing impressive gains and endowing favorable generalizability and scalability.

Transparency rendering is problematic and can be considered an open problem in real-time graphics. There are many different algorithms currently available, but handling complex scenes and achieving accurate, glitch-free results is still costly. This paper describes LucidRaster: a software rasterizer running on a GPU which allows for efficient exact rendering of complex transparent scenes. It uses a new two-stage sorting technique and sample accumulation method. On average it's faster than high-quality OIT approximations and only about 3x slower than hardware alpha blending. It can be very efficient especially when rendering scenes with high triangle density or high depth complexity.

Instruction-based image editing focuses on equipping a generative model with the capacity to adhere to human-written instructions for editing images. Current approaches typically comprehend explicit and specific instructions. However, they often exhibit a deficiency in executing active reasoning capacities required to comprehend instructions that are implicit or insufficiently defined. To enhance active reasoning capabilities and impart intelligence to the editing model, we introduce ReasonPix2Pix, a comprehensive reasoning-attentive instruction editing dataset. The dataset is characterized by 1) reasoning instruction, 2) more realistic images from fine-grained categories, and 3) increased variances between input and edited images. When fine-tuned with our dataset under supervised conditions, the model demonstrates superior performance in instructional editing tasks, independent of whether the tasks require reasoning or not. The code will be available at //github.com/Jin-Ying/ReasonPix2Pix.

Accurate tool tracking is essential for the success of computer-assisted intervention. Previous efforts often modeled tool trajectories rigidly, overlooking the dynamic nature of surgical procedures, especially tracking scenarios like out-of-body and out-of-camera views. Addressing this limitation, the new CholecTrack20 dataset provides detailed labels that account for multiple tool trajectories in three perspectives: (1) intraoperative, (2) intracorporeal, and (3) visibility, representing the different types of temporal duration of tool tracks. These fine-grained labels enhance tracking flexibility but also increase the task complexity. Re-identifying tools after occlusion or re-insertion into the body remains challenging due to high visual similarity, especially among tools of the same category. This work recognizes the critical role of the tool operators in distinguishing tool track instances, especially those belonging to the same tool category. The operators' information are however not explicitly captured in surgical videos. We therefore propose SurgiTrack, a novel deep learning method that leverages YOLOv7 for precise tool detection and employs an attention mechanism to model the originating direction of the tools, as a proxy to their operators, for tool re-identification. To handle diverse tool trajectory perspectives, SurgiTrack employs a harmonizing bipartite matching graph, minimizing conflicts and ensuring accurate tool identity association. Experimental results on CholecTrack20 demonstrate SurgiTrack's effectiveness, outperforming baselines and state-of-the-art methods with real-time inference capability. This work sets a new standard in surgical tool tracking, providing dynamic trajectories for more adaptable and precise assistance in minimally invasive surgeries.

Human pose estimation is a key task in computer vision with various applications such as activity recognition and interactive systems. However, the lack of consistency in the annotated skeletons across different datasets poses challenges in developing universally applicable models. To address this challenge, we propose a novel approach integrating multi-teacher knowledge distillation with a unified skeleton representation. Our networks are jointly trained on the COCO and MPII datasets, containing 17 and 16 keypoints, respectively. We demonstrate enhanced adaptability by predicting an extended set of 21 keypoints, 4 (COCO) and 5 (MPII) more than original annotations, improving cross-dataset generalization. Our joint models achieved an average accuracy of 70.89 and 76.40, compared to 53.79 and 55.78 when trained on a single dataset and evaluated on both. Moreover, we also evaluate all 21 predicted points by our two models by reporting an AP of 66.84 and 72.75 on the Halpe dataset. This highlights the potential of our technique to address one of the most pressing challenges in pose estimation research and application - the inconsistency in skeletal annotations.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司