Side-channel attacks (SCAs), which infer secret information (for example secret keys) by exploiting information that leaks from the implementation (such as power consumption), have been shown to be a non-negligible threat to modern cryptographic implementations and devices in recent years. Hence, how to prevent side-channel attacks on cryptographic devices has become an important problem. One of the widely used countermeasures to against power SCAs is the injection of random noise sequences into the raw leakage traces. However, the indiscriminate injection of random noise can lead to significant increases in energy consumption in device, and ways must be found to reduce the amount of energy in noise generation while keeping the side-channel invisible. In this paper, we propose an optimal energy-efficient design for artificial noise generation to prevent side-channel attacks. This approach exploits the sparsity among the leakage traces. We model the side-channel as a communication channel, which allows us to use channel capacity to measure the mutual information between the secret and the leakage traces. For a given energy budget in the noise generation, we obtain the optimal design of the artificial noise injection by solving the side-channel's channel capacity minimization problem. The experimental results also validate the effectiveness of our proposed scheme.
The distributed edge storage system can store data collected at the edge of the network in a decentralised manner, with low latency, high security, and flexibility. Traditional edge-distributed storage systems only consider one single factor, such as node capacity, when storing data, ignoring network and storage node load conditions that affecting the system's read/write performance. At the same time, it could be more scalable in the widely used wireless terminal application scenarios. To tackle these challenges, this paper proposes an innovative software-defined edge storage architecture based on SDN (Software-Defined Networking) and SMB (Server Message Block) protocols, A data storage node selection algorithm that integrates the network state and storage node load state is designed based on multi-attribute decision model, and a system prototype is realised in conjunction with 5G wireless communication technology. Experimental results demonstrate significant improvements in the performance of high-load write operations compared to traditional edge-distributed storage systems. The proposed wireless distributed edge storage system also demonstrates superior scalability and adaptability, effectively addressing the challenge of limited system scalability and improving compatibility with edge scenarios in mobile applications. In addition, it results in cost savings in hardware deployment and presents a promising advancement in edge storage technology.
Given a text query, partially relevant video retrieval (PRVR) seeks to find untrimmed videos containing pertinent moments in a database. For PRVR, clip modeling is essential to capture the partial relationship between texts and videos. Current PRVR methods adopt scanning-based clip construction to achieve explicit clip modeling, which is information-redundant and requires a large storage overhead. To solve the efficiency problem of PRVR methods, this paper proposes GMMFormer, a \textbf{G}aussian-\textbf{M}ixture-\textbf{M}odel based Trans\textbf{former} which models clip representations implicitly. During frame interactions, we incorporate Gaussian-Mixture-Model constraints to focus each frame on its adjacent frames instead of the whole video. Then generated representations will contain multi-scale clip information, achieving implicit clip modeling. In addition, PRVR methods ignore semantic differences between text queries relevant to the same video, leading to a sparse embedding space. We propose a query diverse loss to distinguish these text queries, making the embedding space more intensive and contain more semantic information. Extensive experiments on three large-scale video datasets (\ie, TVR, ActivityNet Captions, and Charades-STA) demonstrate the superiority and efficiency of GMMFormer.
Document-level event argument extraction (EAE) is a crucial but challenging subtask in information extraction. Most existing approaches focus on the interaction between arguments and event triggers, ignoring two critical points: the information of contextual clues and the semantic correlations among argument roles. In this paper, we propose the CARLG model, which consists of two modules: Contextual Clues Aggregation (CCA) and Role-based Latent Information Guidance (RLIG), effectively leveraging contextual clues and role correlations for improving document-level EAE. The CCA module adaptively captures and integrates contextual clues by utilizing context attention weights from a pre-trained encoder. The RLIG module captures semantic correlations through role-interactive encoding and provides valuable information guidance with latent role representation. Notably, our CCA and RLIG modules are compact, transplantable and efficient, which introduce no more than 1% new parameters and can be easily equipped on other span-base methods with significant performance boost. Extensive experiments on the RAMS, WikiEvents, and MLEE datasets demonstrate the superiority of the proposed CARLG model. It outperforms previous state-of-the-art approaches by 1.26 F1, 1.22 F1, and 1.98 F1, respectively, while reducing the inference time by 31%. Furthermore, we provide detailed experimental analyses based on the performance gains and illustrate the interpretability of our model.
Payment channel networks (PCNs) are a layer-2 blockchain scalability solution, with its main entity, the payment channel, enabling transactions between pairs of nodes "off-chain," thus reducing the burden on the layer-1 network. Nodes with multiple channels can serve as relays for multihop payments by providing their liquidity and withholding part of the payment amount as a fee. Relay nodes might after a while end up with one or more unbalanced channels, and thus need to trigger a rebalancing operation. In this paper, we study how a relay node can maximize its profits from fees by using the rebalancing method of submarine swaps. We introduce a stochastic model to capture the dynamics of a relay node observing random transaction arrivals and performing occasional rebalancing operations, and express the system evolution as a Markov Decision Process. We formulate the problem of the maximization of the node's fortune over time over all rebalancing policies, and approximate the optimal solution by designing a Deep Reinforcement Learning (DRL)-based rebalancing policy. We build a discrete event simulator of the system and use it to demonstrate the DRL policy's superior performance under most conditions by conducting a comparative study of different policies and parameterizations. Our work is the first to introduce DRL for liquidity management in the complex world of PCNs.
Control techniques like MPC can realize contact-rich manipulation which exploits dynamic information, maintaining friction limits and safety constraints. However, contact geometry and dynamics are required to be known. This information is often extracted from CAD, limiting scalability and the ability to handle tasks with varying geometry. To reduce the need for a priori models, we propose a framework for estimating contact models online based on torque and position measurements. To do this, compliant contact models are used, connected in parallel to model multi-point contact and constraints such as a hinge. They are parameterized to be differentiable with respect to all of their parameters (rest position, stiffness, contact location), allowing the coupled robot/environment dynamics to be linearized or efficiently used in gradient-based optimization. These models are then applied for: offline gradient-based parameter fitting, online estimation via an extended Kalman filter, and online gradient-based MPC. The proposed approach is validated on two robots, showing the efficacy of sensorless contact estimation and the effects of online estimation on MPC performance.
We consider a status information updating system where a fusion center collects the status information from a large number of sources and each of them has its own age of information (AoI) constraints. A novel grouping-based scheduler is proposed to solve this complex large-scale problem by dividing the sources into different scheduling groups. The problem is then transformed into deriving the optimal grouping scheme. A two-step grouping algorithm (TGA) is proposed: 1) Given AoI constraints, we first identify the sources with harmonic AoI constraints, then design a fast grouping method and an optimal scheduler for these sources. Under harmonic AoI constraints, each constraint is divisible by the smallest one and the sum of reciprocals of the constraints with the same value is divisible by the reciprocal of the smallest one. 2) For the other sources without such a special property, we pack the sources which can be scheduled together with minimum update rates into the same group. Simulations show the channel usage of the proposed TGA is significantly reduced as compared to a recent work and is 0.42% larger than a derived lower bound when the number of sources is large.
To enhance the message exchange rate between ship1 (S1) and ship2 (S2), an intelligent reflective surface (IRS)-and-unmanned aerial vehicle (UAV)-assisted two-way amplify-and-forward (AF) relay maritime communication network (MCN) is proposed, where S1 and S2 communicate each other via a UAV-mounted IRS and an AF relay. Besides, an optimization problem of maximizing minimum rate is cast, where the variables, namely AF relay beamforming matrix and IRS phase shifts of two time slots, need to be optimized. To achieve a maximum rate, a low-complexity alternately iterative (AI) scheme based on zero forcing and successive convex approximation (LC-ZF-SCA) algorithm is put forward. To obtain a significant rate enhancement, a high-performance AI method based on one step, semidefinite programming and penalty SCA (ONS-SDP-PSCA) is proposed. Simulation results present the rate of the IRS-and-UAV-assisted AF relay MCN via the proposed LC-ZF-SCA and ONS-SDP-PSCA methods surpass those of with random phase and only AF relay.
Labels are widely used in augmented reality (AR) to display digital information. Ensuring the readability of AR labels requires placing them occlusion-free while keeping visual linkings legible, especially when multiple labels exist in the scene. Although existing optimization-based methods, such as force-based methods, are effective in managing AR labels in static scenarios, they often struggle in dynamic scenarios with constantly moving objects. This is due to their focus on generating layouts optimal for the current moment, neglecting future moments and leading to sub-optimal or unstable layouts over time. In this work, we present RL-LABEL, a deep reinforcement learning-based method for managing the placement of AR labels in scenarios involving moving objects. RL-LABEL considers the current and predicted future states of objects and labels, such as positions and velocities, as well as the user's viewpoint, to make informed decisions about label placement. It balances the trade-offs between immediate and long-term objectives. Our experiments on two real-world datasets show that RL-LABEL effectively learns the decision-making process for long-term optimization, outperforming two baselines (i.e., no view management and a force-based method) by minimizing label occlusions, line intersections, and label movement distance. Additionally, a user study involving 18 participants indicates that RL-LABEL excels over the baselines in aiding users to identify, compare, and summarize data on AR labels within dynamic scenes.
We consider low-latency image transmission over a noisy wireless channel when correlated side information is present only at the receiver side (the Wyner-Ziv scenario). In particular, we are interested in developing practical schemes using a data-driven joint source-channel coding (JSCC) approach, which has been previously shown to outperform conventional separation-based approaches in the practical finite blocklength regimes, and to provide graceful degradation with channel quality. We propose a novel neural network architecture that incorporates the decoder-only side information at multiple stages at the receiver side. Our results demonstrate that the proposed method succeeds in integrating the side information, yielding improved performance at all channel noise levels in terms of the various distortion criteria considered here, especially at low channel signal-to-noise ratios (SNRs) and small bandwidth ratios (BRs). We also provide the source code of the proposed method to enable further research and reproducibility of the results.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.