亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Human intelligence thrives on cognitive synergy, where collaboration among different minds yield superior outcomes compared to isolated individuals. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist is an intelligent agent that collaboratively combines multiple minds' strengths and knowledge to enhance problem-solving in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. Our in-depth analysis shows that assigning multiple fine-grained personas in LLMs improves problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, experimental results demonstrate that SPP effectively reduces factual hallucination, and maintains strong reasoning capabilities. Additionally, comparative experiments show that cognitive synergy only emerges in GPT-4 and does not appear in less capable models, such as GPT-3.5-turbo and Llama2-13b-chat, which draws an interesting analogy to human development. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

With the rapid development of deep learning, the implementation of intricate algorithms and substantial data processing have become standard elements of deep learning projects. As a result, the code has become progressively complex as the software evolves, which is difficult to maintain and understand. Existing studies have investigated the impact of refactoring on software quality within traditional software. However, the insight of code refactoring in the context of deep learning is still unclear. This study endeavors to fill this knowledge gap by empirically examining the current state of code refactoring in deep learning realm, and practitioners' views on refactoring. We first manually analyzed the commit history of five popular and well-maintained deep learning projects (e.g., PyTorch). We mined 4,921 refactoring practices in historical commits and measured how different types and elements of refactoring operations are distributed and found that refactoring operation types' distribution in deep learning projects is different from it in traditional Java software. We then surveyed 159 practitioners about their views of code refactoring in deep learning projects and their expectations of current refactoring tools. The result of the survey showed that refactoring research and the development of related tools in the field of deep learning are crucial for improving project maintainability and code quality, and that current refactoring tools do not adequately meet the needs of practitioners. Lastly, we provided our perspective on the future advancement of refactoring tools and offered suggestions for developers' development practices.

3D occupancy, an advanced perception technology for driving scenarios, represents the entire scene without distinguishing between foreground and background by quantifying the physical space into a grid map. The widely adopted projection-first deformable attention, efficient in transforming image features into 3D representations, encounters challenges in aggregating multi-view features due to sensor deployment constraints. To address this issue, we propose our learning-first view attention mechanism for effective multi-view feature aggregation. Moreover, we showcase the scalability of our view attention across diverse multi-view 3D tasks, such as map construction and 3D object detection. Leveraging the proposed view attention as well as an additional multi-frame streaming temporal attention, we introduce ViewFormer, a vision-centric transformer-based framework for spatiotemporal feature aggregation. To further explore occupancy-level flow representation, we present FlowOcc3D, a benchmark built on top of existing high-quality datasets. Qualitative and quantitative analyses on this benchmark reveal the potential to represent fine-grained dynamic scenes. Extensive experiments show that our approach significantly outperforms prior state-of-the-art methods. The codes and benchmark will be released soon.

Human forecasting accuracy in practice relies on the 'wisdom of the crowd' effect, in which predictions about future events are significantly improved by aggregating across a crowd of individual forecasters. Past work on the forecasting ability of large language models (LLMs) suggests that frontier LLMs, as individual forecasters, underperform compared to the gold standard of a human crowd forecasting tournament aggregate. In Study 1, we expand this research by using an LLM ensemble approach consisting of a crowd of twelve LLMs. We compare the aggregated LLM predictions on 31 binary questions to that of a crowd of 925 human forecasters from a three-month forecasting tournament. Our preregistered main analysis shows that the LLM crowd outperforms a simple no-information benchmark and is not statistically different from the human crowd. In exploratory analyses, we find that these two approaches are equivalent with respect to medium-effect-size equivalence bounds. We also observe an acquiescence effect, with mean model predictions being significantly above 50%, despite an almost even split of positive and negative resolutions. Moreover, in Study 2, we test whether LLM predictions (of GPT-4 and Claude 2) can be improved by drawing on human cognitive output. We find that both models' forecasting accuracy benefits from exposure to the median human prediction as information, improving accuracy by between 17% and 28%: though this leads to less accurate predictions than simply averaging human and machine forecasts. Our results suggest that LLMs can achieve forecasting accuracy rivaling that of human crowd forecasting tournaments: via the simple, practically applicable method of forecast aggregation. This replicates the 'wisdom of the crowd' effect for LLMs, and opens up their use for a variety of applications throughout society.

Due to the broad range of social media platforms, the requirements of abusive language detection systems are varied and ever-changing. Already a large set of annotated corpora with different properties and label sets were created, such as hate or misogyny detection, but the form and targets of abusive speech are constantly evolving. Since, the annotation of new corpora is expensive, in this work we leverage datasets we already have, covering a wide range of tasks related to abusive language detection. Our goal is to build models cheaply for a new target label set and/or language, using only a few training examples of the target domain. We propose a two-step approach: first we train our model in a multitask fashion. We then carry out few-shot adaptation to the target requirements. Our experiments show that using already existing datasets and only a few-shots of the target task the performance of models improve both monolingually and across languages. Our analysis also shows that our models acquire a general understanding of abusive language, since they improve the prediction of labels which are present only in the target dataset and can benefit from knowledge about labels which are not directly used for the target task.

Looking at how social values are represented in fairy tales can give insights about the variations in communication of values across cultures. We study how values are communicated in fairy tales from Portugal, Italy and Germany using a technique called word embedding with a compass to quantify vocabulary differences and commonalities. We study how these three national traditions differ in their explicit references to values. To do this, we specify a list of value-charged tokens, consider their word stems and analyse the distance between these in a bespoke pre-trained Word2Vec model. We triangulate and critically discuss the validity of the resulting hypotheses emerging from this quantitative model. Our claim is that this is a reusable and reproducible method for the study of the values explicitly referenced in historical corpora. Finally, our preliminary findings hint at a shared cultural understanding and the expression of values such as Benevolence, Conformity, and Universalism across the studied cultures, suggesting the potential existence of a pan-European cultural memory.

Incremental learning is the ability of systems to acquire knowledge over time, enabling their adaptation and generalization to novel tasks. It is a critical ability for intelligent, real-world systems, especially when data changes frequently or is limited. This review provides a comprehensive analysis of incremental learning in Large Language Models. It synthesizes the state-of-the-art incremental learning paradigms, including continual learning, meta-learning, parameter-efficient learning, and mixture-of-experts learning. We demonstrate their utility for incremental learning by describing specific achievements from these related topics and their critical factors. An important finding is that many of these approaches do not update the core model, and none of them update incrementally in real-time. The paper highlights current problems and challenges for future research in the field. By consolidating the latest relevant research developments, this review offers a comprehensive understanding of incremental learning and its implications for designing and developing LLM-based learning systems.

This study aims to introduce and address the problem of traffic load estimation in the cell switching concept within the evolving landscape of vertical heterogeneous networks (vHetNets). The problem is that the practice of cell switching faces a significant challenge due to the lack of accurate data on the traffic load of sleeping small base stations (SBSs). This problem makes the majority of the studies in the literature, particularly those employing load-dependent approaches, impractical due to their basic assumption of perfect knowledge of the traffic loads of sleeping SBSs for the next time slot. Rather than developing another advanced cell switching algorithm, this study investigates the impacts of estimation errors and explores possible solutions through established methodologies in a novel vHetNet environment that includes the integration of a high altitude platform (HAPS) as a super macro base station (SMBS) into the terrestrial network. In other words, this study adopts a more foundational perspective, focusing on eliminating a significant obstacle for the application of advanced cell switching algorithms. To this end, we explore the potential of three distinct spatial interpolation-based estimation schemes: random neighboring selection, distance-based selection, and clustering-based selection. Utilizing a real dataset for empirical validations, we evaluate the efficacy of our proposed traffic load estimation schemes. Our results demonstrate that the multi-level clustering (MLC) algorithm performs exceptionally well, with an insignificant difference (i.e., 0.8%) observed between its estimated and actual network power consumption, highlighting its potential to significantly improve energy efficiency in vHetNets.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

北京阿比特科技有限公司