亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Patankar-type schemes are linearly implicit time integration methods designed to be unconditionally positivity-preserving by going outside of the class of general linear methods. Thus, classical stability concepts cannot be applied and there is no satisfying stability or robustness theory for these schemes. We develop a new approach to study a few related issues that impact some Patankar-type methods. In particular, we demonstrate problematic behaviors of these methods that can lead to undesired oscillations or order reduction on very simple linear problems. Extreme cases of the latter manifest as spurious steady states. We investigate various classes of Patankar-type schemes based on classical Runge-Kutta methods, strong stability preserving Runge-Kutta methods, and deferred correction schemes using our approach. Finally, we strengthen our analysis with challenging applications including stiff nonlinear problems.

相關內容

In this paper, we propose a variationally consistent technique for decreasing the maximum eigenfrequencies of structural dynamics related finite element formulations. Our approach is based on adding a symmetric positive-definite term to the mass matrix that follows from the integral of the traction jump across element boundaries. The added term is weighted by a small factor, for which we derive a suitable, and simple, element-local parameter choice. For linear problems, we show that our mass-scaling method produces no adverse effects in terms of spatial accuracy and orders of convergence. We illustrate these properties in one, two and three spatial dimension, for quadrilateral elements and triangular elements, and for up to fourth order polynomials basis functions. To extend the method to non-linear problems, we introduce a linear approximation and show that a sizeable increase in critical time-step size can be achieved while only causing minor (even beneficial) influences on the dynamic response.

In this article, a numerical scheme to find approximate solutions to the McKendrick-Von Foerster equation with diffusion (M-V-D) is presented. The main difficulty in employing the standard analysis to study the properties of this scheme is due to presence of nonlinear and nonlocal term in the Robin boundary condition in the M-V-D. To overcome this, we use the abstract theory of discretizations based on the notion of stability threshold to analyze the scheme. Stability, and convergence of the proposed numerical scheme are established.

We study the implicit upwind finite volume scheme for numerically approximating the advection-diffusion equation with a vector field in the low regularity DiPerna-Lions setting. That is, we are concerned with advecting velocity fields that are spatially Sobolev regular and data that are merely integrable. We study the implicit upwind finite volume scheme for numerically approximating the advection-diffusion equation with a vector field in the low regularity DiPerna-Lions setting. We prove that on unstructured regular meshes the rate of convergence of approximate solutions generated by the upwind scheme towards the unique solution of the continuous model is at least one. The numerical error is estimated in terms of logarithmic Kantorovich-Rubinstein distances and provides thus a bound on the rate of weak convergence.

In this paper, we construct a robust adaptive central-upwind scheme on unstructured triangular grids for two-dimensional shallow water equations with variable density. The method is well-balanced, positivity-preserving, and oscillation-free at the curve where two types of fluid merge. The proposed approach is an extension of the adaptive well-balanced, positivity-preserving scheme developed in Epshteyn and Nguyen (arXiv preprint arXiv:2011.06143, 2020). In particular, to preserve "lake-at-rest" steady states, we utilize the Riemann Solver with appropriately rotated coordinates to obtain the point values in the neighborhood of the fluid interface. In addition, to improve the efficiency of an adaptive method in the multifluid flow, the curve of density discontinuity is reconstructed by using the level set method and volume fraction method. To demonstrate the accuracy, high resolution, and efficiency of the new adaptive central-upwind scheme, several challenging tests for Shallow water models with variable density are performed.

We propose a novel statistical inference paradigm for zero-inflated multiway count data that dispenses with the need to distinguish between true and false zero counts. Our approach ignores all zero entries and applies zero-truncated Poisson regression on the positive counts. Inference is accomplished via tensor completion that imposes low-rank structure on the Poisson parameter space. Our main result shows that an $N$-way rank-$R$ parametric tensor $\boldsymbol{\mathscr{M}}\in(0,\infty)^{I\times \cdots\times I}$ generating Poisson observations can be accurately estimated from approximately $IR^2\log_2^2(I)$ non-zero counts for a nonnegative canonical polyadic decomposition. Several numerical experiments are presented demonstrating that our zero-truncated paradigm is comparable to the ideal scenario where the locations of false zero counts are known a priori.

We demonstrate the effectiveness of an adaptive explicit Euler method for the approximate solution of the Cox-Ingersoll-Ross model. This relies on a class of path-bounded timestepping strategies which work by reducing the stepsize as solutions approach a neighbourhood of zero. The method is hybrid in the sense that a convergent backstop method is invoked if the timestep becomes too small, or to prevent solutions from overshooting zero and becoming negative. Under parameter constraints that imply Feller's condition, we prove that such a scheme is strongly convergent, of order at least 1/2. Control of the strong error is important for multi-level Monte Carlo techniques. Under Feller's condition we also prove that the probability of ever needing the backstop method to prevent a negative value can be made arbitrarily small. Numerically, we compare this adaptive method to fixed step implicit and explicit schemes, and a novel semi-implicit adaptive variant. We observe that the adaptive approach leads to methods that are competitive in a domain that extends beyond Feller's condition, indicating suitability for the modelling of stochastic volatility in Heston-type asset models.

The paper provides a novel framework to study the accuracy and stability of numerical integration schemes when employed for the time domain simulation of power systems. A matrix pencil-based approach is adopted to evaluate the error between the dynamic modes of the power system and the modes of the approximated discrete-time system arising from the application of the numerical method. The proposed approach can provide meaningful insights on how different methods compare to each other when applied to a power system, while being general enough to be systematically utilized for, in principle, any numerical method. The framework is illustrated for a handful of well-known explicit and implicit methods, while simulation results are presented based on the WSCC 9-bus system, as well as on a 1, 479-bus dynamic model of the All-Island Irish Transmission System.

Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady state solutions of hyperbolic partial differential equations (PDEs). As other types of fast sweeping schemes, fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order. The resulting iterative schemes have fast convergence rate to steady state solutions. Moreover, an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve inverse operation of any nonlinear local system. Hence they are robust and flexible, and have been combined with high order accurate weighted essentially non-oscillatory (WENO) schemes to solve various hyperbolic PDEs in the literature. For multidimensional nonlinear problems, high order fixed-point fast sweeping WENO methods still require quite large amount of computational costs. In this technical note, we apply sparse-grid techniques, an effective approximation tool for multidimensional problems, to fixed-point fast sweeping WENO method for reducing its computational costs. Here we focus on a robust Runge-Kutta (RK) type fixed-point fast sweeping WENO scheme with third order accuracy (Zhang et al. 2006 [33]), for solving Eikonal equations, an important class of static Hamilton-Jacobi (H-J) equations. Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse grid computations of the fixed-point fast sweeping WENO scheme achieve large savings of CPU times on refined meshes, and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.

We investigate how the final parameters found by stochastic gradient descent are influenced by over-parameterization. We generate families of models by increasing the number of channels in a base network, and then perform a large hyper-parameter search to study how the test error depends on learning rate, batch size, and network width. We find that the optimal SGD hyper-parameters are determined by a "normalized noise scale," which is a function of the batch size, learning rate, and initialization conditions. In the absence of batch normalization, the optimal normalized noise scale is directly proportional to width. Wider networks, with their higher optimal noise scale, also achieve higher test accuracy. These observations hold for MLPs, ConvNets, and ResNets, and for two different parameterization schemes ("Standard" and "NTK"). We observe a similar trend with batch normalization for ResNets. Surprisingly, since the largest stable learning rate is bounded, the largest batch size consistent with the optimal normalized noise scale decreases as the width increases.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司