亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning causal effects from data is a fundamental and well-studied problem across science, especially when the cause-effect relationship is static in nature. However, causal effect is less explored when there are dynamical dependencies, i.e., when dependencies exist between entities across time. Identifying dynamic causal effects from time-series observations is computationally expensive when compared to the static scenario. We demonstrate that the computational complexity of recovering the causation structure for the vector auto-regressive (VAR) model is $O(Tn^3N^2)$, where $n$ is the number of nodes, $T$ is the number of samples, and $N$ is the largest time-lag in the dependency between entities. We report a method, with a reduced complexity of $O(Tn^3 \log N)$, to recover the causation structure to obtain frequency-domain (FD) representations of time-series. Since FFT accumulates all the time dependencies on every frequency, causal inference can be performed efficiently by considering the state variables as random variables at any given frequency. We additionally show that, for systems with interactions that are LTI, do-calculus machinery can be realized in the FD resulting in versions of the classical single-door (with cycles), front and backdoor criteria. We demonstrate, for a large class of problems, graph reconstruction using multivariate Wiener projections results in a significant computational advantage with $O(n)$ complexity over reconstruction algorithms such as the PC algorithm which has $O(n^q)$ complexity, where $q$ is the maximum neighborhood size. This advantage accrues due to some remarkable properties of the phase response of the frequency-dependent Wiener coefficients which is not present in any time-domain approach.

相關內容

A crucial element in predicting the outcomes of process interventions and making informed decisions about the process is unraveling the genuine relationships between the execution of process activities. Contemporary process discovery algorithms exploit time precedence as their main source of model derivation. Such reliance can sometimes be deceiving from a causal perspective. This calls for faithful new techniques to discover the true execution dependencies among the tasks in the process. To this end, our work offers a systematic approach to the unveiling of the true causal business process by leveraging an existing causal discovery algorithm over activity timing. In addition, this work delves into a set of conditions under which process mining discovery algorithms generate a model that is incongruent with the causal business process model, and shows how the latter model can be methodologically employed for a sound analysis of the process. Our methodology searches for such discrepancies between the two models in the context of three causal patterns, and derives a new view in which these inconsistencies are annotated over the mined process model. We demonstrate our methodology employing two open process mining algorithms, the IBM Process Mining tool, and the LiNGAM causal discovery technique. We apply it on a synthesized dataset and on two open benchmark data sets.

Dual use, the intentional, harmful reuse of technology and scientific artefacts, is a problem yet to be well-defined within the context of Natural Language Processing (NLP). However, as NLP technologies continue to advance and become increasingly widespread in society, their inner workings have become increasingly opaque. Therefore, understanding dual use concerns and potential ways of limiting them is critical to minimising the potential harms of research and development. In this paper, we conduct a survey of NLP researchers and practitioners to understand the depth and their perspective of the problem as well as to assess existing available support. Based on the results of our survey, we offer a definition of dual use that is tailored to the needs of the NLP community. The survey revealed that a majority of researchers are concerned about the potential dual use of their research but only take limited action toward it. In light of the survey results, we discuss the current state and potential means for mitigating dual use in NLP and propose a checklist that can be integrated into existing conference ethics-frameworks, e.g., the ACL ethics checklist.

Spatial trend estimation under potential heterogeneity is an important problem to extract spatial characteristics and hazards such as criminal activity. By focusing on quantiles, which provide substantial information on distributions compared with commonly used summary statistics such as means, it is often useful to estimate not only the average trend but also the high (low) risk trend additionally. In this paper, we propose a Bayesian quantile trend filtering method to estimate the non-stationary trend of quantiles on graphs and apply it to crime data in Tokyo between 2013 and 2017. By modeling multiple observation cases, we can estimate the potential heterogeneity of spatial crime trends over multiple years in the application. To induce locally adaptive Bayesian inference on trends, we introduce general shrinkage priors for graph differences. Introducing so-called shadow priors with multivariate distribution for local scale parameters and mixture representation of the asymmetric Laplace distribution, we provide a simple Gibbs sampling algorithm to generate posterior samples. The numerical performance of the proposed method is demonstrated through simulation studies.

Passage retrieval is a fundamental task in many information systems, such as web search and question answering, where both efficiency and effectiveness are critical concerns. In recent years, neural retrievers based on pre-trained language models (PLM), such as dual-encoders, have achieved huge success. Yet, studies have found that the performance of dual-encoders are often limited due to the neglecting of the interaction information between queries and candidate passages. Therefore, various interaction paradigms have been proposed to improve the performance of vanilla dual-encoders. Particularly, recent state-of-the-art methods often introduce late-interaction during the model inference process. However, such late-interaction based methods usually bring extensive computation and storage cost on large corpus. Despite their effectiveness, the concern of efficiency and space footprint is still an important factor that limits the application of interaction-based neural retrieval models. To tackle this issue, we incorporate implicit interaction into dual-encoders, and propose I^3 retriever. In particular, our implicit interaction paradigm leverages generated pseudo-queries to simulate query-passage interaction, which jointly optimizes with query and passage encoders in an end-to-end manner. It can be fully pre-computed and cached, and its inference process only involves simple dot product operation of the query vector and passage vector, which makes it as efficient as the vanilla dual encoders. We conduct comprehensive experiments on MSMARCO and TREC2019 Deep Learning Datasets, demonstrating the I^3 retriever's superiority in terms of both effectiveness and efficiency. Moreover, the proposed implicit interaction is compatible with special pre-training and knowledge distillation for passage retrieval, which brings a new state-of-the-art performance.

With the emergence of powerful representations of continuous data in the form of neural fields, there is a need for discretization invariant learning: an approach for learning maps between functions on continuous domains without being sensitive to how the function is sampled. We present a new framework for understanding and designing discretization invariant neural networks (DI-Nets), which generalizes many discrete networks such as convolutional neural networks as well as continuous networks such as neural operators. Our analysis establishes upper bounds on the deviation in model outputs under different finite discretizations, and highlights the central role of point set discrepancy in characterizing such bounds. This insight leads to the design of a family of neural networks driven by numerical integration via quasi-Monte Carlo sampling with discretizations of low discrepancy. We prove by construction that DI-Nets universally approximate a large class of maps between integrable function spaces, and show that discretization invariance also describes backpropagation through such models. Applied to neural fields, convolutional DI-Nets can learn to classify and segment visual data under various discretizations, and sometimes generalize to new types of discretizations at test time. Code: //github.com/clintonjwang/DI-net.

Data Augmentation through generating pseudo data has been proven effective in mitigating the challenge of data scarcity in the field of Grammatical Error Correction (GEC). Various augmentation strategies have been widely explored, most of which are motivated by two heuristics, i.e., increasing the distribution similarity and diversity of pseudo data. However, the underlying mechanism responsible for the effectiveness of these strategies remains poorly understood. In this paper, we aim to clarify how data augmentation improves GEC models. To this end, we introduce two interpretable and computationally efficient measures: Affinity and Diversity. Our findings indicate that an excellent GEC data augmentation strategy characterized by high Affinity and appropriate Diversity can better improve the performance of GEC models. Based on this observation, we propose MixEdit, a data augmentation approach that strategically and dynamically augments realistic data, without requiring extra monolingual corpora. To verify the correctness of our findings and the effectiveness of the proposed MixEdit, we conduct experiments on mainstream English and Chinese GEC datasets. The results show that MixEdit substantially improves GEC models and is complementary to traditional data augmentation methods.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司