In this paper, we extend the applicability of the bandwidth choice method of Politis (2003) by relaxing the conditions of his Theorem 2.3.
ASIC hash engines are specifically optimized for parallel computations of cryptographic hashes and thus a natural environment for mounting brute-force attacks on hash functions. Two fundamental advantages of ASICs over general purpose computers are the area advantage and the energy efficiency. The memory-hard functions approach the problem by reducing the area advantage of ASICs compared to general-purpose computers. Traditionally, memory-hard functions have been analyzed in the (parallel) random oracle model. However, as the memory-hard security game is multi-stage, indifferentiability does not apply and instantiating the random oracle becomes a non-trivial problem. Chen and Tessaro (CRYPTO 2019) considered this issue and showed how random oracles should be instantiated in the context of memory-hard functions. The Bandwidth-Hard functions, introduced by Ren and Devadas (TCC 2017), aim to provide ASIC resistance by reducing the energy advantage of ASICs. In particular, bandwidth-hard functions provide ASIC resistance by guaranteeing high run time energy cost if the available cache is not large enough. Previously, bandwidth-hard functions have been analyzed in the parallel random oracle model. In this work, we show how those random oracles can be instantiated using random permutations in the context of bandwidth-hard functions. Our results are generic and valid for any hard-to-pebble graphs.
Given a partial differential equation (PDE), goal-oriented error estimation allows us to understand how errors in a diagnostic quantity of interest (QoI), or goal, occur and accumulate in a numerical approximation, for example using the finite element method. By decomposing the error estimates into contributions from individual elements, it is possible to formulate adaptation methods, which modify the mesh with the objective of minimising the resulting QoI error. However, the standard error estimate formulation involves the true adjoint solution, which is unknown in practice. As such, it is common practice to approximate it with an 'enriched' approximation (e.g. in a higher order space or on a refined mesh). Doing so generally results in a significant increase in computational cost, which can be a bottleneck compromising the competitiveness of (goal-oriented) adaptive simulations. The central idea of this paper is to develop a "data-driven" goal-oriented mesh adaptation approach through the selective replacement of the expensive error estimation step with an appropriately configured and trained neural network. In doing so, the error estimator may be obtained without even constructing the enriched spaces. An element-by-element construction is employed here, whereby local values of various parameters related to the mesh geometry and underlying problem physics are taken as inputs, and the corresponding contribution to the error estimator is taken as output. We demonstrate that this approach is able to obtain the same accuracy with a reduced computational cost, for adaptive mesh test cases related to flow around tidal turbines, which interact via their downstream wakes, and where the overall power output of the farm is taken as the QoI. Moreover, we demonstrate that the element-by-element approach implies reasonably low training costs.
New operating conditions can result in a significant performance drop of fault diagnostics models due to the domain shift between the training and the testing data distributions. While several domain adaptation approaches have been proposed to overcome such domain shifts, their application is limited if the fault classes represented in the two domains are not the same. To enable a better transferability of the trained models between two different domains, particularly in setups where only the healthy data class is shared between the two domains, we propose a new framework for Partial and Open-Partial domain adaptation based on generating distinct fault signatures with a Wasserstein GAN. The main contribution of the proposed framework is the controlled synthetic fault data generation with two main distinct characteristics. Firstly, the proposed methodology enables to generate unobserved fault types in the target domain by having only access to the healthy samples in the target domain and faulty samples in the source domain. Secondly, the fault generation can be controlled to precisely generate distinct fault types and fault severity levels. The proposed method is especially suited in extreme domain adaption settings that are particularly relevant in the context of complex and safety-critical systems, where only one class is shared between the two domains. We evaluate the proposed framework on Partial as well as Open-Partial domain adaptation tasks on two bearing fault diagnostics case studies. Our experiments conducted in different label space settings showcase the versatility of the proposed framework. The proposed methodology provided superior results compared to other methods given large domain gaps.
For supervised classification problems, this paper considers estimating the query's label probability through local regression using observed covariates. Well-known nonparametric kernel smoother and $k$-nearest neighbor ($k$-NN) estimator, which take label average over a ball around the query, are consistent but asymptotically biased particularly for a large radius of the ball. To eradicate such bias, local polynomial regression (LPoR) and multiscale $k$-NN (MS-$k$-NN) learn the bias term by local regression around the query and extrapolate it to the query itself. However, their theoretical optimality has been shown for the limit of the infinite number of training samples. For correcting the asymptotic bias with fewer observations, this paper proposes a \emph{local radial regression (LRR)} and its logistic regression variant called \emph{local radial logistic regression~(LRLR)}, by combining the advantages of LPoR and MS-$k$-NN. The idea is quite simple: we fit the local regression to observed labels by taking only the radial distance as the explanatory variable and then extrapolate the estimated label probability to zero distance. The usefulness of the proposed method is shown theoretically and experimentally. We prove the convergence rate of the $L^2$ risk for LRR with reference to MS-$k$-NN, and our numerical experiments, including real-world datasets of daily stock indices, demonstrate that LRLR outperforms LPoR and MS-$k$-NN.
Spatial data can exhibit dependence structures more complicated than can be represented using models that rely on the traditional assumptions of stationarity and isotropy. Several statistical methods have been developed to relax these assumptions. One in particular, the "spatial deformation approach" defines a transformation from the geographic space in which data are observed, to a latent space in which stationarity and isotropy are assumed to hold. Taking inspiration from this class of models, we develop a new model for spatially dependent data observed on graphs. Our method implies an embedding of the graph into Euclidean space wherein the covariance can be modeled using traditional covariance functions such as those from the Mat\'{e}rn family. This is done via a class of graph metrics compatible with such covariance functions. By estimating the edge weights which underlie these metrics, we can recover the "intrinsic distance" between nodes of a graph. We compare our model to existing methods for spatially dependent graph data, primarily conditional autoregressive (CAR) models and their variants and illustrate the advantages our approach has over traditional methods. We fit our model and competitors to bird abundance data for several species in North Carolina. We find that our model fits the data best, and provides insight into the interaction between species-specific spatial distributions and geography.
Cluster-level inference procedures are widely used for brain mapping. These methods compare the size of clusters obtained by thresholding brain maps to an upper bound under the global null hypothesis, computed using Random Field Theory or permutations. However, the guarantees obtained by this type of inference - i.e. at least one voxel is truly activated in the cluster - are not informative with regards to the strength of the signal therein. There is thus a need for methods to assess the amount of signal within clusters; yet such methods have to take into account that clusters are defined based on the data, which creates circularity in the inference scheme. This has motivated the use of post hoc estimates that allow statistically valid estimation of the proportion of activated voxels in clusters. In the context of fMRI data, the All-Resolutions Inference framework introduced in [25] provides post hoc estimates of the proportion of activated voxels. However, this method relies on parametric threshold families, which results in conservative inference. In this paper, we leverage randomization methods to adapt to data characteristics and obtain tighter false discovery control. We obtain Notip, for Non-parametric True Discovery Proportion control: a powerful, non-parametric method that yields statistically valid guarantees on the proportion of activated voxels in data-derived clusters. Numerical experiments demonstrate substantial gains in number of detections compared with state-of-the-art methods on 36 fMRI datasets. The conditions under which the proposed method brings benefits are also discussed.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks. Prior methods have been focused on overcoming this problem on convolutional neural networks (CNNs), where the input samples like images lie in a grid domain, but have largely overlooked graph neural networks (GNNs) that handle non-grid data. In this paper, we propose a novel scheme dedicated to overcoming catastrophic forgetting problem and hence strengthen continual learning in GNNs. At the heart of our approach is a generic module, termed as topology-aware weight preserving~(TWP), applicable to arbitrary form of GNNs in a plug-and-play fashion. Unlike the main stream of CNN-based continual learning methods that rely on solely slowing down the updates of parameters important to the downstream task, TWP explicitly explores the local structures of the input graph, and attempts to stabilize the parameters playing pivotal roles in the topological aggregation. We evaluate TWP on different GNN backbones over several datasets, and demonstrate that it yields performances superior to the state of the art. Code is publicly available at \url{//github.com/hhliu79/TWP}.