亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Matrix perturbation bounds (such as Weyl and Davis-Kahan) are frequently used in many branches of mathematics. Most of the classical results in this area are optimal, in the worst-case analysis. However, in modern applications, both the ground and the nose matrices frequently have extra structural properties. For instance, it is often assumed that the ground matrix is essentially low rank, and the nose matrix is random or pseudo-random. We aim to rebuild a part of perturbation theory, adapting to these modern assumptions. We will do this using a contour expansion argument, which enables us to exploit the skewness among the leading eigenvectors of the ground and the noise matrix (which is significant when the two are uncorrelated) to our advantage. In the current paper, we focus on the perturbation of eigenspaces. This helps us to introduce the arguments in the cleanest way, avoiding the more technical consideration of the general case. In applications, this case is also one of the most useful. More general results appear in a subsequent paper. Our method has led to several improvements, which have direct applications in central problems. Among others, we derive a sharp result for the perturbation of a low rank matrix with random perturbation, answering an open question in this area. Next, we derive new results concerning the spike model, an important model in statistics, bridging two different directions of current research. Finally, we use our results on the perturbation of eigenspaces to derive new results concerning eigenvalues of deterministic and random matrices. In particular, we obtain new results concerning the outliers in the deformed Wigner model and the least singular value of random matrices with non-zero mean.

相關內容

We consider the problem of sampling a high dimensional multimodal target probability measure. We assume that a good proposal kernel to move only a subset of the degrees of freedoms (also known as collective variables) is known a priori. This proposal kernel can for example be built using normalizing flows. We show how to extend the move from the collective variable space to the full space and how to implement an accept-reject step in order to get a reversible chain with respect to a target probability measure. The accept-reject step does not require to know the marginal of the original measure in the collective variable (namely to know the free energy). The obtained algorithm admits several variants, some of them being very close to methods which have been proposed previously in the literature. We show how the obtained acceptance ratio can be expressed in terms of the work which appears in the Jarzynski-Crooks equality, at least for some variants. Numerical illustrations demonstrate the efficiency of the approach on various simple test cases, and allow us to compare the variants of the algorithm.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

The Johnson--Lindenstrauss (JL) lemma is a powerful tool for dimensionality reduction in modern algorithm design. The lemma states that any set of high-dimensional points in a Euclidean space can be flattened to lower dimensions while approximately preserving pairwise Euclidean distances. Random matrices satisfying this lemma are called JL transforms (JLTs). Inspired by existing $s$-hashing JLTs with exactly $s$ nonzero elements on each column, the present work introduces an ensemble of sparse matrices encompassing so-called $s$-hashing-like matrices whose expected number of nonzero elements on each column is~$s$. The independence of the sub-Gaussian entries of these matrices and the knowledge of their exact distribution play an important role in their analyses. Using properties of independent sub-Gaussian random variables, these matrices are demonstrated to be JLTs, and their smallest and largest singular values are estimated non-asymptotically using a technique from geometric functional analysis. As the dimensions of the matrix grow to infinity, these singular values are proved to converge almost surely to fixed quantities (by using the universal Bai--Yin law), and in distribution to the Gaussian orthogonal ensemble (GOE) Tracy--Widom law after proper rescalings. Understanding the behaviors of extreme singular values is important in general because they are often used to define a measure of stability of matrix algorithms. For example, JLTs were recently used in derivative-free optimization algorithmic frameworks to select random subspaces in which are constructed random models or poll directions to achieve scalability, whence estimating their smallest singular value in particular helps determine the dimension of these subspaces.

The gradient bounds of generalized barycentric coordinates play an essential role in the $H^1$ norm approximation error estimate of generalized barycentric interpolations. Similarly, the $H^k$ norm, $k>1$, estimate needs upper bounds of high-order derivatives, which are not available in the literature. In this paper, we derive such upper bounds for the Wachspress generalized barycentric coordinates on simple convex $d$-dimensional polytopes, $d\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of, for example, fourth-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.

In this paper, we solve stochastic partial differential equations (SPDEs) numerically by using (possibly random) neural networks in the truncated Wiener chaos expansion of their corresponding solution. Moreover, we provide some approximation rates for learning the solution of SPDEs with additive and/or multiplicative noise. Finally, we apply our results in numerical examples to approximate the solution of three SPDEs: the stochastic heat equation, the Heath-Jarrow-Morton equation, and the Zakai equation.

Dealing with uncertainty in optimization parameters is an important and longstanding challenge. Typically, uncertain parameters are predicted accurately, and then a deterministic optimization problem is solved. However, the decisions produced by this so-called \emph{predict-then-optimize} procedure can be highly sensitive to uncertain parameters. In this work, we contribute to recent efforts in producing \emph{decision-focused} predictions, i.e., to build predictive models that are constructed with the goal of minimizing a \emph{regret} measure on the decisions taken with them. We begin by formulating the exact expected regret minimization as a pessimistic bilevel optimization model. Then, we establish NP-completeness of this problem, even in a heavily restricted case. Using duality arguments, we reformulate it as a non-convex quadratic optimization problem. Finally, we show various computational techniques to achieve tractability. We report extensive computational results on shortest-path instances with uncertain cost vectors. Our results indicate that our approach can improve training performance over the approach of Elmachtoub and Grigas (2022), a state-of-the-art method for decision-focused learning.

We consider random matrix ensembles on the set of Hermitian matrices that are heavy tailed, in particular not all moments exist, and that are invariant under the conjugate action of the unitary group. The latter property entails that the eigenvectors are Haar distributed and, therefore, factorise from the eigenvalue statistics. We prove a classification for stable matrix ensembles of this kind of matrices represented in terms of matrices, their eigenvalues and their diagonal entries with the help of the classification of the multivariate stable distributions and the harmonic analysis on symmetric matrix spaces. Moreover, we identify sufficient and necessary conditions for their domains of attraction. To illustrate our findings we discuss for instance elliptical invariant random matrix ensembles and P\'olya ensembles, the latter playing a particular role in matrix convolutions. As a byproduct we generalise the derivative principle on the Hermitian matrices to general tempered distributions. This principle relates the joint probability density of the eigenvalues and the diagonal entries of the random matrix.

Coboundary expansion is a high dimensional generalization of the Cheeger constant to simplicial complexes. Originally, this notion was motivated by the fact that it implies topological expansion, but nowadays a significant part of the motivation stems from its deep connection to problems in theoretical computer science such as agreement expansion in the low soundness regime. In this paper, we prove coboundary expansion with non-Abelian coefficients for the coset complex construction of Kaufman and Oppenheim. Our proof uses a novel global argument, as opposed to the local-to-global arguments that are used to prove cosystolic expansion.

We develop a Markov model of curling matches, parametrised by the probability of winning an end and the probability distribution of scoring ends. In practical applications, these end-winning probabilities can be estimated econometrically, and are shown to depend on which team holds the hammer, as well as the offensive and defensive strengths of the respective teams. Using a maximum entropy argument, based on the idea of characteristic scoring patterns in curling, we predict that the points distribution of scoring ends should follow a constrained geometric distribution. We provide analytical results detailing when it is optimal to blank the end in preference to scoring one point and losing possession of the hammer. Statistical and simulation analysis of international curling matches is also performed.

Transformers can efficiently learn in-context from example demonstrations. Most existing theoretical analyses studied the in-context learning (ICL) ability of transformers for linear function classes, where it is typically shown that the minimizer of the pretraining loss implements one gradient descent step on the least squares objective. However, this simplified linear setting arguably does not demonstrate the statistical efficiency of ICL, since the pretrained transformer does not outperform directly solving linear regression on the test prompt. In this paper, we study ICL of a nonlinear function class via transformer with nonlinear MLP layer: given a class of \textit{single-index} target functions $f_*(\boldsymbol{x}) = \sigma_*(\langle\boldsymbol{x},\boldsymbol{\beta}\rangle)$, where the index features $\boldsymbol{\beta}\in\mathbb{R}^d$ are drawn from a $r$-dimensional subspace, we show that a nonlinear transformer optimized by gradient descent (with a pretraining sample complexity that depends on the \textit{information exponent} of the link functions $\sigma_*$) learns $f_*$ in-context with a prompt length that only depends on the dimension of the distribution of target functions $r$; in contrast, any algorithm that directly learns $f_*$ on test prompt yields a statistical complexity that scales with the ambient dimension $d$. Our result highlights the adaptivity of the pretrained transformer to low-dimensional structures of the function class, which enables sample-efficient ICL that outperforms estimators that only have access to the in-context data.

北京阿比特科技有限公司