Hardware intellectual property (IP) piracy is an emerging threat to the global supply chain. Correspondingly, various countermeasures aim to protect hardware IPs, such as logic locking, camouflaging, and split manufacturing. However, these countermeasures cannot always guarantee IP security. A malicious attacker can access the layout/netlist of the hardware IP protected by these countermeasures and further retrieve the design. To eliminate/bypass these vulnerabilities, a recent approach redacts the design's IP to an embedded field-programmable gate array (eFPGA), disabling the attacker's access to the layout/netlist. eFPGAs can be programmed with arbitrary functionality. Without the bitstream, the attacker cannot recover the functionality of the protected IP. Consequently, state-of-the-art attacks are inapplicable to pirate the redacted hardware IP. In this paper, we challenge the assumed security of eFPGA-based redaction. We present an attack to retrieve the hardware IP with only black-box access to a programmed eFPGA. We observe the effect of modern electronic design automation (EDA) tools on practical hardware circuits and leverage the observation to guide our attack. Thus, our proposed method FuncTeller selects minterms to query, recovering the circuit function within a reasonable time. We demonstrate the effectiveness and efficiency of FuncTeller on multiple circuits, including academic benchmark circuits, Stanford MIPS processor, IBEX processor, Common Evaluation Platform GPS, and Cybersecurity Awareness Worldwide competition circuits. Our results show that FuncTeller achieves an average accuracy greater than 85% over these tested circuits retrieving the design's functionality.
As large language models, such as GPT, continue to advance the capabilities of natural language processing (NLP), the question arises: does the problem of correction still persist? This paper investigates the role of correction in the context of large language models by conducting two experiments. The first experiment focuses on correction as a standalone task, employing few-shot learning techniques with GPT-like models for error correction. The second experiment explores the notion of correction as a preparatory task for other NLP tasks, examining whether large language models can tolerate and perform adequately on texts containing certain levels of noise or errors. By addressing these experiments, we aim to shed light on the significance of correction in the era of large language models and its implications for various NLP applications.
Knowledge Graph (KG)-to-Text Generation has seen recent improvements in generating fluent and informative sentences which describe a given KG. As KGs are widespread across multiple domains and contain important entity-relation information, and as text simplification aims to reduce the complexity of a text while preserving the meaning of the original text, we propose KGSimple, a novel approach to unsupervised text simplification which infuses KG-established techniques in order to construct a simplified KG path and generate a concise text which preserves the original input's meaning. Through an iterative and sampling KG-first approach, our model is capable of simplifying text when starting from a KG by learning to keep important information while harnessing KG-to-text generation to output fluent and descriptive sentences. We evaluate various settings of the KGSimple model on currently-available KG-to-text datasets, demonstrating its effectiveness compared to unsupervised text simplification models which start with a given complex text. Our code is available on GitHub.
Graph convolutional networks (GCNs) have been shown to be vulnerable to small adversarial perturbations, which becomes a severe threat and largely limits their applications in security-critical scenarios. To mitigate such a threat, considerable research efforts have been devoted to increasing the robustness of GCNs against adversarial attacks. However, current defense approaches are typically designed to prevent GCNs from untargeted adversarial attacks and focus on overall performance, making it challenging to protect important local nodes from more powerful targeted adversarial attacks. Additionally, a trade-off between robustness and performance is often made in existing research. Such limitations highlight the need for developing an effective and efficient approach that can defend local nodes against targeted attacks, without compromising the overall performance of GCNs. In this work, we present a simple yet effective method, named Graph Universal Adversarial Defense (GUARD). Unlike previous works, GUARD protects each individual node from attacks with a universal defensive patch, which is generated once and can be applied to any node (node-agnostic) in a graph. GUARD is fast, straightforward to implement without any change to network architecture nor any additional parameters, and is broadly applicable to any GCNs. Extensive experiments on four benchmark datasets demonstrate that GUARD significantly improves robustness for several established GCNs against multiple adversarial attacks and outperforms state-of-the-art defense methods by large margins.
Artificial intelligence (AI) makes decisions impacting our daily lives in an increasingly autonomous manner. Their actions might cause accidents, harm, or, more generally, violate regulations. Determining whether an AI caused a specific event and, if so, what triggered the AI's action, are key forensic questions. We provide a conceptualization of the problems and strategies for forensic investigation. We focus on AI that is potentially ``malicious by design'' and grey box analysis. Our evaluation using convolutional neural networks illustrates challenges and ideas for identifying malicious AI.
Human landing, exploration and settlement on Mars will require local compute resources at the Mars edge. Landing such resources on Mars is an expensive endeavor. Instead, in this paper we lay out how concepts from low-Earth orbit edge computing may be applied to Mars edge computing. This could lower launching costs of compute resources for Mars while also providing Mars-wide networking and compute coverage. We propose a possible Mars compute constellation, discuss applications, analyze feasibility, and raise research questions for future work.
Large Language Models (LLMs) could enhance access to the legal system. However, empirical research on their effectiveness in conducting legal tasks is scant. We study securities cases involving cryptocurrencies as one of numerous contexts where AI could support the legal process, studying LLMs' legal reasoning and drafting capabilities. We examine whether a) an LLM can accurately determine which laws are potentially being violated from a fact pattern, and b) whether there is a difference in juror decision-making based on complaints written by a lawyer compared to an LLM. We feed fact patterns from real-life cases to GPT-3.5 and evaluate its ability to determine correct potential violations from the scenario and exclude spurious violations. Second, we had mock jurors assess complaints written by the LLM and lawyers. GPT-3.5's legal reasoning skills proved weak, though we expect improvement in future models, particularly given the violations it suggested tended to be correct (it merely missed additional, correct violations). GPT-3.5 performed better at legal drafting, and jurors' decisions were not statistically significantly associated with the author of the document upon which they based their decisions. Because LLMs cannot satisfactorily conduct legal reasoning tasks, they would be unable to replace lawyers at this stage. However, their drafting skills (though, perhaps, still inferior to lawyers), could provide access to justice for more individuals by reducing the cost of legal services. Our research is the first to systematically study LLMs' legal drafting and reasoning capabilities in litigation, as well as in securities law and cryptocurrency-related misconduct.
Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.
Generative Adversarial Networks (GANs) can produce images of surprising complexity and realism, but are generally modeled to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose to model object composition in a GAN framework as a self-consistent composition-decomposition network. Our model is conditioned on the object images from their marginal distributions to generate a realistic image from their joint distribution by explicitly learning the possible interactions. We evaluate our model through qualitative experiments and user evaluations in both the scenarios when either paired or unpaired examples for the individual object images and the joint scenes are given during training. Our results reveal that the learned model captures potential interactions between the two object domains given as input to output new instances of composed scene at test time in a reasonable fashion.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.