Mobile networks (MN) are anticipated to provide unprecedented opportunities to enable a new world of connected experiences and radically shift the way people interact with everything. MN are becoming more and more complex, driven by ever-increasingly complicated configuration issues and blossoming new service requirements. This complexity poses significant challenges in deployment, management, operation, optimization, and maintenance, since they require a complete understanding and cognition of MN. Artificial intelligence (AI), which deals with the simulation of intelligent behavior in computers, has demonstrated enormous success in many application domains, suggesting its potential in cognizing the state of MN and making intelligent decisions. In this paper, we first propose an AI-powered mobile network architecture and discuss challenges in terms of cognition complexity, decisions with high-dimensional action space, and self-adaption to system dynamics. Then, potential solutions that are associated with AI are discussed. Finally, we propose a deep learning approach that directly maps the state of MN to perceived QoS, integrating cognition with the decision. Our proposed approach helps operators in making more intelligent decisions to guarantee QoS. Meanwhile, the effectiveness and advantages of our proposed approach are demonstrated on a real-world dataset, involving $31261$ users over $77$ stations within $5$ days.
Millions of learners worldwide are now using intelligent tutoring systems (ITSs). At their core, ITSs rely on machine learning algorithms to track each user's changing performance level over time to provide personalized instruction. Crucially, student performance models are trained using interaction sequence data of previous learners to analyse data generated by future learners. This induces a cold-start problem when a new course is introduced for which no training data is available. Here, we consider transfer learning techniques as a way to provide accurate performance predictions for new courses by leveraging log data from existing courses. We study two settings: (i) In the naive transfer setting, we propose course-agnostic performance models that can be applied to any course. (ii) In the inductive transfer setting, we tune pre-trained course-agnostic performance models to new courses using small-scale target course data (e.g., collected during a pilot study). We evaluate the proposed techniques using student interaction sequence data from 5 different mathematics courses containing data from over 47,000 students in a real world large-scale ITS. The course-agnostic models that use additional features provided by human domain experts (e.g, difficulty ratings for questions in the new course) but no student interaction training data for the new course, achieve prediction accuracy on par with standard BKT and PFA models that use training data from thousands of students in the new course. In the inductive setting our transfer learning approach yields more accurate predictions than conventional performance models when only limited student interaction training data (<100 students) is available to both.
Convolutional neural networks (CNNs) have recently attracted great attention in geoscience due to their ability to capture non-linear system behavior and extract predictive spatiotemporal patterns. Given their black-box nature however, and the importance of prediction explainability, methods of explainable artificial intelligence (XAI) are gaining popularity as a means to explain the CNN decision-making strategy. Here, we establish an intercomparison of some of the most popular XAI methods and investigate their fidelity in explaining CNN decisions for geoscientific applications. Our goal is to raise awareness of the theoretical limitations of these methods and gain insight into the relative strengths and weaknesses to help guide best practices. The considered XAI methods are first applied to an idealized attribution benchmark, where the ground truth of explanation of the network is known a priori, to help objectively assess their performance. Secondly, we apply XAI to a climate-related prediction setting, namely to explain a CNN that is trained to predict the number of atmospheric rivers in daily snapshots of climate simulations. Our results highlight several important issues of XAI methods (e.g., gradient shattering, inability to distinguish the sign of attribution, ignorance to zero input) that have previously been overlooked in our field and, if not considered cautiously, may lead to a distorted picture of the CNN decision-making strategy. We envision that our analysis will motivate further investigation into XAI fidelity and will help towards a cautious implementation of XAI in geoscience, which can lead to further exploitation of CNNs and deep learning for prediction problems.
Artificial intelligence (AI) has been applied widely in our daily lives in a variety of ways with numerous success stories. AI has also contributed to dealing with the coronavirus disease (COVID-19) pandemic, which has been happening around the globe. This paper presents a survey of AI methods being used in various applications in the fight against the COVID-19 outbreak and outlines the crucial role of AI research in this unprecedented battle. We touch on areas where AI plays as an essential component, from medical image processing, data analytics, text mining and natural language processing, the Internet of Things, to computational biology and medicine. A summary of COVID-19 related data sources that are available for research purposes is also presented. Research directions on exploring the potential of AI and enhancing its capability and power in the pandemic battle are thoroughly discussed. We identify 13 groups of problems related to the COVID-19 pandemic and highlight promising AI methods and tools that can be used to address these problems. It is envisaged that this study will provide AI researchers and the wider community with an overview of the current status of AI applications, and motivate researchers to harness AI's potential in the fight against COVID-19.
Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.
Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.
Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.