亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The goal of this paper is to construct ergodic estimators for the parameters in the double exponential Ornstein-Uhlenbeck process, observed at discrete time instants with time step size h. The existence and uniqueness, the strong consistency, and the asymptotic normality of the estimators are obtained for arbitrarily fixed time step size h. A simulation method of the double exponential Ornstein-Uhlenbeck process is proposed and some numerical simulations are performed to demonstrate the effectiveness of the proposed estimators.

相關內容

We use a numerical-analytic technique to construct a sequence of successive approximations to the solution of a system of fractional differential equations, subject to Dirichlet boundary conditions. We prove the uniform convergence of the sequence of approximations to a limit function, which is the unique solution to the boundary value problem under consideration, and give necessary and sufficient conditions for the existence of solutions. The obtained theoretical results are confirmed by a model example.

Much of the theory for the lasso in the linear model $Y = X \beta^* + \varepsilon$ hinges on the quantity $2 \| X^\top \varepsilon \|_{\infty} / n$, which we call the lasso's effective noise. Among other things, the effective noise plays an important role in finite-sample bounds for the lasso, the calibration of the lasso's tuning parameter, and inference on the parameter vector $\beta^*$. In this paper, we develop a bootstrap-based estimator of the quantiles of the effective noise. The estimator is fully data-driven, that is, does not require any additional tuning parameters. We equip our estimator with finite-sample guarantees and apply it to tuning parameter calibration for the lasso and to high-dimensional inference on the parameter vector $\beta^*$.

We study the problem of parameter estimation for discretely observed stochastic differential equations driven by small fractional noise. Under some conditions, we obtain strong consistency and rate of convergence of the least square estimator(LSE) when small dispersion coefficient converges to 0 and sample size converges to infty.

The additive hazards model specifies the effect of covariates on the hazard in an additive way, in contrast to the popular Cox model, in which it is multiplicative. As non-parametric model, it offers a very flexible way of modeling time-varying covariate effects. It is most commonly estimated by ordinary least squares. In this paper we consider the case where covariates are bounded, and derive the maximum likelihood estimator under the constraint that the hazard is non-negative for all covariate values in their domain. We describe an efficient algorithm to find the maximum likelihood estimator. The method is contrasted with the ordinary least squares approach in a simulation study, and the method is illustrated on a realistic data set.

We study the robust mean estimation problem in high dimensions, where less than half of the datapoints can be arbitrarily corrupted. Motivated by compressive sensing, we formulate the robust mean estimation problem as the minimization of the $\ell_0$-`norm' of an \emph{outlier indicator vector}, under a second moment constraint on the datapoints. We further relax the $\ell_0$-`norm' to the $\ell_p$-norm ($0<p\leq 1$) in the objective and prove that the global minima for each of these objectives are order-optimal for the robust mean estimation problem. Then we propose a computationally tractable iterative $\ell_p$-minimization and hard thresholding algorithm that outputs an order-optimal robust estimate of the population mean. Both synthetic and real data experiments demonstrate that the proposed algorithm outperforms state-of-the-art robust mean estimation methods. The source code will be made available at GitHub.

This paper studies the inference of the regression coefficient matrix under multivariate response linear regressions in the presence of hidden variables. A novel procedure for constructing confidence intervals of entries of the coefficient matrix is proposed. Our method first utilizes the multivariate nature of the responses by estimating and adjusting the hidden effect to construct an initial estimator of the coefficient matrix. By further deploying a low-dimensional projection procedure to reduce the bias introduced by the regularization in the previous step, a refined estimator is proposed and shown to be asymptotically normal. The asymptotic variance of the resulting estimator is derived with closed-form expression and can be consistently estimated. In addition, we propose a testing procedure for the existence of hidden effects and provide its theoretical justification. Both our procedures and their analyses are valid even when the feature dimension and the number of responses exceed the sample size. Our results are further backed up via extensive simulations and a real data analysis.

We consider parametric estimation and tests for multi-dimensional diffusion processes with a small dispersion parameter $\varepsilon$ from discrete observations. For parametric estimation of diffusion processes, the main target is to estimate the drift parameter and the diffusion parameter. In this paper, we propose two types of adaptive estimators for both parameters and show their asymptotic properties under $\varepsilon\to0$, $n\to\infty$ and the balance condition that $(\varepsilon n^\rho)^{-1} =O(1)$ for some $\rho>0$. Using these adaptive estimators, we also introduce consistent adaptive testing methods and prove that test statistics for adaptive tests have asymptotic distributions under null hypothesis. In simulation studies, we examine and compare asymptotic behaviors of the two kinds of adaptive estimators and test statistics. Moreover, we treat the SIR model which describes a simple epidemic spread for a biological application.

We determine the exact minimax rate of a Gaussian sequence model under bounded convex constraints, purely in terms of the local geometry of the given constraint set $K$. Our main result shows that the minimax risk (up to constant factors) under the squared $L_2$ loss is given by $\epsilon^{*2} \wedge \operatorname{diam}(K)^2$ with \begin{align*} \epsilon^* = \sup \bigg\{\epsilon : \frac{\epsilon^2}{\sigma^2} \leq \log M^{\operatorname{loc}}(\epsilon)\bigg\}, \end{align*} where $\log M^{\operatorname{loc}}(\epsilon)$ denotes the local entropy of the set $K$, and $\sigma^2$ is the variance of the noise. We utilize our abstract result to re-derive known minimax rates for some special sets $K$ such as hyperrectangles, ellipses, and more generally quadratically convex orthosymmetric sets. Finally, we extend our results to the unbounded case with known $\sigma^2$ to show that the minimax rate in that case is $\epsilon^{*2}$.

Heatmap-based methods dominate in the field of human pose estimation by modelling the output distribution through likelihood heatmaps. In contrast, regression-based methods are more efficient but suffer from inferior performance. In this work, we explore maximum likelihood estimation (MLE) to develop an efficient and effective regression-based methods. From the perspective of MLE, adopting different regression losses is making different assumptions about the output density function. A density function closer to the true distribution leads to a better regression performance. In light of this, we propose a novel regression paradigm with Residual Log-likelihood Estimation (RLE) to capture the underlying output distribution. Concretely, RLE learns the change of the distribution instead of the unreferenced underlying distribution to facilitate the training process. With the proposed reparameterization design, our method is compatible with off-the-shelf flow models. The proposed method is effective, efficient and flexible. We show its potential in various human pose estimation tasks with comprehensive experiments. Compared to the conventional regression paradigm, regression with RLE bring 12.4 mAP improvement on MSCOCO without any test-time overhead. Moreover, for the first time, especially on multi-person pose estimation, our regression method is superior to the heatmap-based methods. Our code is available at //github.com/Jeff-sjtu/res-loglikelihood-regression

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

北京阿比特科技有限公司