亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper is concerned with the numerical solution of compressible fluid flow in a fractured porous medium. The fracture represents a fast pathway (i.e., with high permeability) and is modeled as a hypersurface embedded in the porous medium. We aim to develop fast-convergent and accurate global-in-time domain decomposition (DD) methods for such a reduced fracture model, in which smaller time step sizes in the fracture can be coupled with larger time step sizes in the subdomains. Using the pressure continuity equation and the tangential PDEs in the fracture-interface as transmission conditions, three different DD formulations are derived; each method leads to a space-time interface problem which is solved iteratively and globally in time. Efficient preconditioners are designed to accelerate the convergence of the iterative methods while preserving the accuracy in time with nonconforming grids. Numerical results for two-dimensional problems with non-immersed and partially immersed fractures are presented to show the improved performance of the proposed methods.

相關內容

By defining two important terms called basic perturbation vectors and obtaining their linear bounds, we obtain the linear componentwise perturbation bounds for unitary factors and upper triangular factors of the generalized Schur decomposition. The perturbation bounds for the diagonal elements of the upper triangular factors and the generalized invariant subspace are also derived. From the former, we present an upper bound and a condition number of the generalized eigenvalue. Furthermore, with numerical iterative method, the nonlinear componentwise perturbation bounds of the generalized Schur decomposition are also provided. Numerical examples are given to test the obtained bounds. Among them, we compare our upper bound and condition number of the generalized eigenvalue with their counterparts given in the literature. Numerical results show that they are very close to each other but our results don't contain the information on the left and right generalized eigenvectors.

We introduce and analyze various Regularized Combined Field Integral Equations (CFIER) formulations of time-harmonic Navier equations in media with piece-wise constant material properties. These formulations can be derived systematically starting from suitable coercive approximations of Dirichlet-to-Neumann operators (DtN), and we present a periodic pseudodifferential calculus framework within which the well posedness of CIER formulations can be established. We also use the DtN approximations to derive and analyze Optimized Schwarz (OS) methods for the solution of elastodynamics transmission problems. The pseudodifferential calculus we develop in this paper relies on careful singularity splittings of the kernels of Navier boundary integral operators which is also the basis of high-order Nystr\"om quadratures for their discretizations. Based on these high-order discretizations we investigate the rate of convergence of iterative solvers applied to CFIER and OS formulations of scattering and transmission problems. We present a variety of numerical results that illustrate that the CFIER methodology leads to important computational savings over the classical CFIE one, whenever iterative solvers are used for the solution of the ensuing discretized boundary integral equations. Finally, we show that the OS methods are competitive in the high-frequency high-contrast regime.

We consider statistical models arising from the common set of solutions to a sparse polynomial system with general coefficients. The maximum likelihood degree counts the number of critical points of the likelihood function restricted to the model. We prove the maximum likelihood degree of a sparse polynomial system is determined by its Newton polytopes and equals the mixed volume of a related Lagrange system of equations.

Real-time coordination of distributed energy resources (DERs) is crucial for regulating the voltage profile in distribution grids. By capitalizing on a scalable neural network (NN) architecture, one can attain decentralized DER decisions to address the lack of real-time communications. This paper develops an advanced learning-enabled DER coordination scheme by accounting for the potential risks associated with reactive power prediction and voltage deviation. Such risks are quantified by the conditional value-at-risk (CVaR) using the worst-case samples only, and we propose a mini-batch selection algorithm to address the training speed issue in minimizing the CVaR-regularized loss. Numerical tests using real-world data on the IEEE 123-bus test case have demonstrated the computation and safety improvements of the proposed risk-aware learning algorithm for decentralized DER decision making, especially in terms of reducing feeder voltage violations.

The scattering and transmission of harmonic acoustic waves at a penetrable material are commonly modelled by a set of Helmholtz equations. This system of partial differential equations can be rewritten into boundary integral equations defined at the surface of the objects and solved with the boundary element method (BEM). High frequencies or geometrical details require a fine surface mesh, which increases the number of degrees of freedom in the weak formulation. Then, matrix compression techniques need to be combined with iterative linear solvers to limit the computational footprint. Moreover, the convergence of the iterative linear solvers often depends on the frequency of the wave field and the objects' characteristic size. Here, the robust PMCHWT formulation is used to solve the acoustic transmission problem. An operator preconditioner based on on-surface radiation conditions (OSRC) is designed that yields frequency-robust convergence characteristics. Computational benchmarks compare the performance of this novel preconditioned formulation with other preconditioners and boundary integral formulations. The OSRC preconditioned PMCHWT formulation effectively simulates large-scale problems of engineering interest, such as focused ultrasound treatment of osteoid osteoma.

Existing inferential methods for small area data involve a trade-off between maintaining area-level frequentist coverage rates and improving inferential precision via the incorporation of indirect information. In this article, we propose a method to obtain an area-level prediction region for a future observation which mitigates this trade-off. The proposed method takes a conformal prediction approach in which the conformity measure is the posterior predictive density of a working model that incorporates indirect information. The resulting prediction region has guaranteed frequentist coverage regardless of the working model, and, if the working model assumptions are accurate, the region has minimum expected volume compared to other regions with the same coverage rate. When constructed under a normal working model, we prove such a prediction region is an interval and construct an efficient algorithm to obtain the exact interval. We illustrate the performance of our method through simulation studies and an application to EPA radon survey data.

We propose a stochastic conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms. Existing CGM variants for this template either suffer from slow convergence rates, or require carefully increasing the batch size over the course of the algorithm's execution, which leads to computing full gradients. In contrast, the proposed method, equipped with a stochastic average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques. In applications we put special emphasis on problems with a large number of separable constraints. Such problems are prevalent among semidefinite programming (SDP) formulations arising in machine learning and theoretical computer science. We provide numerical experiments on matrix completion, unsupervised clustering, and sparsest-cut SDPs.

In this paper, the Lie symmetry analysis is proposed for a space-time convection-diffusion fractional differential equations with the Riemann-Liouville derivative by (2+1) independent variables and one dependent variable. We find a reduction form of our governed fractional differential equation using the similarity solution of our Lie symmetry. One-dimensional optimal system of Lie symmetry algebras is found. We present a computational method via the spectral method based on Bernstein's operational matrices to solve the two-dimensional fractional heat equation with some initial conditions.

The geometric high-order regularization methods such as mean curvature and Gaussian curvature, have been intensively studied during the last decades due to their abilities in preserving geometric properties including image edges, corners, and image contrast. However, the dilemma between restoration quality and computational efficiency is an essential roadblock for high-order methods. In this paper, we propose fast multi-grid algorithms for minimizing both mean curvature and Gaussian curvature energy functionals without sacrificing the accuracy for efficiency. Unlike the existing approaches based on operator splitting and the Augmented Lagrangian method (ALM), no artificial parameters are introduced in our formulation, which guarantees the robustness of the proposed algorithm. Meanwhile, we adopt the domain decomposition method to promote parallel computing and use the fine-to-coarse structure to accelerate the convergence. Numerical experiments are presented on both image denoising and CT reconstruction problem to demonstrate the ability to recover image texture and the efficiency of the proposed method.

Convection-diffusion-reaction equations model the conservation of scalar quantities. From the analytic point of view, solution of these equations satisfy under certain conditions maximum principles, which represent physical bounds of the solution. That the same bounds are respected by numerical approximations of the solution is often of utmost importance in practice. The mathematical formulation of this property, which contributes to the physical consistency of a method, is called Discrete Maximum Principle (DMP). In many applications, convection dominates diffusion by several orders of magnitude. It is well known that standard discretizations typically do not satisfy the DMP in this convection-dominated regime. In fact, in this case, it turns out to be a challenging problem to construct discretizations that, on the one hand, respect the DMP and, on the other hand, compute accurate solutions. This paper presents a survey on finite element methods, with a main focus on the convection-dominated regime, that satisfy a local or a global DMP. The concepts of the underlying numerical analysis are discussed. The survey reveals that for the steady-state problem there are only a few discretizations, all of them nonlinear, that at the same time satisfy the DMP and compute reasonably accurate solutions, e.g., algebraically stabilized schemes. Moreover, most of these discretizations have been developed in recent years, showing the enormous progress that has been achieved lately. Methods based on algebraic stabilization, nonlinear and linear ones, are currently as well the only finite element methods that combine the satisfaction of the global DMP and accurate numerical results for the evolutionary equations in the convection-dominated situation.

北京阿比特科技有限公司