The ability to edit 3D assets from natural language presents a compelling paradigm to aid in the democratization of 3D content creation. However, while natural language is often effective at communicating general intent, it is poorly suited for specifying precise manipulation. To address this gap, we introduce ParSEL, a system that enables controllable editing of high-quality 3D assets from natural language. Given a segmented 3D mesh and an editing request, ParSEL produces a parameterized editing program. Adjusting the program parameters allows users to explore shape variations with a precise control over the magnitudes of edits. To infer editing programs which align with an input edit request, we leverage the abilities of large-language models (LLMs). However, while we find that LLMs excel at identifying initial edit operations, they often fail to infer complete editing programs, and produce outputs that violate shape semantics. To overcome this issue, we introduce Analytical Edit Propagation (AEP), an algorithm which extends a seed edit with additional operations until a complete editing program has been formed. Unlike prior methods, AEP searches for analytical editing operations compatible with a range of possible user edits through the integration of computer algebra systems for geometric analysis. Experimentally we demonstrate ParSEL's effectiveness in enabling controllable editing of 3D objects through natural language requests over alternative system designs.
This paper presents ShapeLLM, the first 3D Multimodal Large Language Model (LLM) designed for embodied interaction, exploring a universal 3D object understanding with 3D point clouds and languages. ShapeLLM is built upon an improved 3D encoder by extending ReCon to ReCon++ that benefits from multi-view image distillation for enhanced geometry understanding. By utilizing ReCon++ as the 3D point cloud input encoder for LLMs, ShapeLLM is trained on constructed instruction-following data and tested on our newly human-curated benchmark, 3D MM-Vet. ReCon++ and ShapeLLM achieve state-of-the-art performance in 3D geometry understanding and language-unified 3D interaction tasks, such as embodied visual grounding. Project page: //qizekun.github.io/shapellm/
Volumetric video based on Neural Radiance Field (NeRF) holds vast potential for various 3D applications, but its substantial data volume poses significant challenges for compression and transmission. Current NeRF compression lacks the flexibility to adjust video quality and bitrate within a single model for various network and device capacities. To address these issues, we propose HPC, a novel hierarchical progressive volumetric video coding framework achieving variable bitrate using a single model. Specifically, HPC introduces a hierarchical representation with a multi-resolution residual radiance field to reduce temporal redundancy in long-duration sequences while simultaneously generating various levels of detail. Then, we propose an end-to-end progressive learning approach with a multi-rate-distortion loss function to jointly optimize both hierarchical representation and compression. Our HPC trained only once can realize multiple compression levels, while the current methods need to train multiple fixed-bitrate models for different rate-distortion (RD) tradeoffs. Extensive experiments demonstrate that HPC achieves flexible quality levels with variable bitrate by a single model and exhibits competitive RD performance, even outperforming fixed-bitrate models across various datasets.
This technical report describes the Time Series Optimized Transformer for Observability (Toto), a new state of the art foundation model for time series forecasting developed by Datadog. In addition to advancing the state of the art on generalized time series benchmarks in domains such as electricity and weather, this model is the first general-purpose time series forecasting foundation model to be specifically tuned for observability metrics. Toto was trained on a dataset of one trillion time series data points, the largest among all currently published time series foundation models. Alongside publicly available time series datasets, 75% of the data used to train Toto consists of fully anonymous numerical metric data points from the Datadog platform. In our experiments, Toto outperforms existing time series foundation models on observability data. It does this while also excelling at general-purpose forecasting tasks, achieving state-of-the-art zero-shot performance on multiple open benchmark datasets.
This paper introduces an approach that integrates self-adaptive Evolution Strategies (ES) with Large Language Models (LLMs) to enhance the explainability of complex optimization processes. By employing a self-adaptive ES equipped with a restart mechanism, we effectively navigate the challenging landscapes of benchmark functions, capturing detailed logs of the optimization journey, including fitness evolution, step-size adjustments, and restart events due to stagnation. An LLM is then utilized to process these logs, generating concise, user-friendly summaries that highlight key aspects such as convergence behavior, optimal fitness achievements, and encounters with local optima. Our case study on the Rastrigin function demonstrates how our approach makes the complexities of ES optimization transparent and accessible. Our findings highlight the potential of using LLMs to bridge the gap between advanced optimization algorithms and their interpretability.
Jailbreak attacks on large language models (LLMs) involve inducing these models to generate harmful content that violates ethics or laws, posing a significant threat to LLM security. Current jailbreak attacks face two main challenges: low success rates due to defensive measures and high resource requirements for crafting specific prompts. This paper introduces Virtual Context, which leverages special tokens, previously overlooked in LLM security, to improve jailbreak attacks. Virtual Context addresses these challenges by significantly increasing the success rates of existing jailbreak methods and requiring minimal background knowledge about the target model, thus enhancing effectiveness in black-box settings without additional overhead. Comprehensive evaluations show that Virtual Context-assisted jailbreak attacks can improve the success rates of four widely used jailbreak methods by approximately 40% across various LLMs. Additionally, applying Virtual Context to original malicious behaviors still achieves a notable jailbreak effect. In summary, our research highlights the potential of special tokens in jailbreak attacks and recommends including this threat in red-teaming testing to comprehensively enhance LLM security.
Transformers excel in Natural Language Processing (NLP) due to their prowess in capturing long-term dependencies but suffer from exponential resource consumption with increasing sequence lengths. To address these challenges, we propose MCSD model, an efficient language model with linear scaling and fast inference speed. MCSD model leverages diverse feature fusion, primarily through the multi-channel slope and decay (MCSD) block, to robustly represent features. This block comprises slope and decay sections that extract features across diverse temporal receptive fields, facilitating capture of both local and global information. In addition, MCSD block conducts element-wise fusion of diverse features to further enhance the delicate feature extraction capability. For inference, we formulate the inference process into a recurrent representation, slashing space complexity to $O(1)$ and time complexity to $O(N)$ respectively. Our experiments show that MCSD attains higher throughput and lower GPU memory consumption compared to Transformers, while maintaining comparable performance to larger-scale language learning models on benchmark tests. These attributes position MCSD as a promising base for edge deployment and embodied intelligence.
This paper introduces Standard Basis LoRA (SBoRA), a novel parameter-efficient fine-tuning approach for Large Language Models that builds upon the pioneering works of Low-Rank Adaptation (LoRA) and Orthogonal Adaptation. SBoRA further reduces the computational and memory requirements of LoRA while enhancing learning performance. By leveraging orthogonal standard basis vectors to initialize one of the low-rank matrices, either A or B, SBoRA enables regional weight updates and memory-efficient fine-tuning. This approach gives rise to two variants, SBoRA-FA and SBoRA-FB, where only one of the matrices is updated, resulting in a sparse update matrix with a majority of zero rows or columns. Consequently, the majority of the fine-tuned model's weights remain unchanged from the pre-trained weights. This characteristic of SBoRA, wherein regional weight updates occur, is reminiscent of the modular organization of the human brain, which efficiently adapts to new tasks. Our empirical results demonstrate the superiority of SBoRA-FA over LoRA in various fine-tuning tasks, including commonsense reasoning and arithmetic reasoning. Furthermore, we evaluate the effectiveness of QSBoRA on quantized LLaMA models of varying scales, highlighting its potential for efficient adaptation to new tasks. Code is available at //github.com/cityuhkai/SBoRA
We propose a novel Neural Radiance Field (NeRF) representation for non-opaque scenes that enables fast inference by utilizing textured polygons. Despite the high-quality novel view rendering that NeRF provides, a critical limitation is that it relies on volume rendering that can be computationally expensive and does not utilize the advancements in modern graphics hardware. Many existing methods fall short when it comes to modelling volumetric effects as they rely purely on surface rendering. We thus propose to model the scene with polygons, which can then be used to obtain the quadrature points required to model volumetric effects, and also their opacity and colour from the texture. To obtain such polygonal mesh, we train a specialized field whose zero-crossings would correspond to the quadrature points when volume rendering, and perform marching cubes on this field. We then perform ray-tracing and utilize the ray-tracing shader to obtain the final colour image. Our method allows an easy integration with existing graphics frameworks allowing rendering speed of over 100 frames-per-second for a $1920\times1080$ image, while still being able to represent non-opaque objects.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.