亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Normative non-functional requirements specify constraints that a system must observe in order to avoid violations of social, legal, ethical, empathetic, and cultural norms. As these requirements are typically defined by non-technical system stakeholders with different expertise and priorities (ethicists, lawyers, social scientists, etc.), ensuring their well-formedness and consistency is very challenging. Recent research has tackled this challenge using a domain-specific language to specify normative requirements as rules whose consistency can then be analysed with formal methods. In this paper, we propose a complementary approach that uses Large Language Models to extract semantic relationships between abstract representations of system capabilities. These relations, which are often assumed implicitly by non-technical stakeholders (e.g., based on common sense or domain knowledge), are then used to enrich the automated reasoning techniques for eliciting and analyzing the consistency of normative requirements. We show the effectiveness of our approach to normative requirements elicitation and operationalization through a range of real-world case studies.

相關內容

The problem of sample complexity of online reinforcement learning is often studied in the literature without taking into account any partial knowledge about the system dynamics that could potentially accelerate the learning process. In this paper, we study the sample complexity of online Q-learning methods when some prior knowledge about the dynamics is available or can be learned efficiently. We focus on systems that evolve according to an additive disturbance model of the form $S_{h+1} = f(S_h, A_h) + W_h$, where $f$ represents the underlying system dynamics, and $W_h$ are unknown disturbances independent of states and actions. In the setting of finite episodic Markov decision processes with $S$ states, $A$ actions, and episode length $H$, we present an optimistic Q-learning algorithm that achieves $\tilde{\mathcal{O}}(\text{Poly}(H)\sqrt{T})$ regret under perfect knowledge of $f$, where $T$ is the total number of interactions with the system. This is in contrast to the typical $\tilde{\mathcal{O}}(\text{Poly}(H)\sqrt{SAT})$ regret for existing Q-learning methods. Further, if only a noisy estimate $\hat{f}$ of $f$ is available, our method can learn an approximately optimal policy in a number of samples that is independent of the cardinalities of state and action spaces. The sub-optimality gap depends on the approximation error $\hat{f}-f$, as well as the Lipschitz constant of the corresponding optimal value function. Our approach does not require modeling of the transition probabilities and enjoys the same memory complexity as model-free methods.

Accurately modeling the correlation structure of errors is essential for reliable uncertainty quantification in probabilistic time series forecasting. Recent deep learning models for multivariate time series have developed efficient parameterizations for time-varying contemporaneous covariance, but they often assume temporal independence of errors for simplicity. However, real-world data frequently exhibit significant error autocorrelation and cross-lag correlation due to factors such as missing covariates. In this paper, we present a plug-and-play method that learns the covariance structure of errors over multiple steps for autoregressive models with Gaussian-distributed errors. To achieve scalable inference and computational efficiency, we model the contemporaneous covariance using a low-rank-plus-diagonal parameterization and characterize cross-covariance through a group of independent latent temporal processes. The learned covariance matrix can be used to calibrate predictions based on observed residuals. We evaluate our method on probabilistic models built on RNN and Transformer architectures, and the results confirm the effectiveness of our approach in enhancing predictive accuracy and uncertainty quantification without significantly increasing the parameter size.

In conventional supervised learning, a training dataset is given with ground-truth labels from a known label set, and the learned model will classify unseen instances to known labels. This paper studies a new problem setting in which there are unknown classes in the training data misperceived as other labels, and thus their existence appears unknown from the given supervision. We attribute the unknown unknowns to the fact that the training dataset is badly advised by the incompletely perceived label space due to the insufficient feature information. To this end, we propose the exploratory machine learning, which examines and investigates training data by actively augmenting the feature space to discover potentially hidden classes. Our method consists of three ingredients including rejection model, feature exploration, and model cascade. We provide theoretical analysis to justify its superiority, and validate the effectiveness on both synthetic and real datasets.

Collaborative graph analysis across multiple institutions is becoming increasingly popular. Realistic examples include social network analysis across various social platforms, financial transaction analysis across multiple banks, and analyzing the transmission of infectious diseases across multiple hospitals. We define the federated graph analytics, a new problem for collaborative graph analytics under differential privacy. Although differentially private graph analysis has been widely studied, it fails to achieve a good tradeoff between utility and privacy in federated scenarios, due to the limited view of local clients and overlapping information across multiple subgraphs. Motivated by this, we first propose a federated graph analytic framework, named FEAT, which enables arbitrary downstream common graph statistics while preserving individual privacy. Furthermore, we introduce an optimized framework based on our proposed degree-based partition algorithm, called FEAT+, which improves the overall utility by leveraging the true local subgraphs. Finally, extensive experiments demonstrate that our FEAT and FEAT+ significantly outperform the baseline approach by approximately one and four orders of magnitude, respectively.

In response to the social issue of the increasing number of elderly vulnerable groups going missing due to the aggravating aging population in China, our team has developed a wearable anti-loss device and intelligent early warning system for elderly individuals with intermittent dementia using artificial intelligence and IoT technology. This system comprises an anti-loss smart helmet, a cloud computing module, and an intelligent early warning application on the caregiver's mobile device. The smart helmet integrates a miniature camera module, a GPS module, and a 5G communication module to collect first-person images and location information of the elderly. Data is transmitted remotely via 5G, FTP, and TCP protocols. In the cloud computing module, our team has proposed for the first time a multimodal dangerous state recognition network based on scene and location information to accurately assess the risk of elderly individuals going missing. Finally, the application software interface designed for the caregiver's mobile device implements multi-level early warnings. The system developed by our team requires no operation or response from the elderly, achieving fully automatic environmental perception, risk assessment, and proactive alarming. This overcomes the limitations of traditional monitoring devices, which require active operation and response, thus avoiding the issue of the digital divide for the elderly. It effectively prevents accidental loss and potential dangers for elderly individuals with dementia.

We introduce a novel neural network-based algorithm to compute optimal transport (OT) plans for general cost functionals. In contrast to common Euclidean costs, i.e., $\ell^1$ or $\ell^2$, such functionals provide more flexibility and allow using auxiliary information, such as class labels, to construct the required transport map. Existing methods for general costs are discrete and have limitations in practice, i.e. they do not provide an out-of-sample estimation. We address the challenge of designing a continuous OT approach for general costs that generalizes to new data points in high-dimensional spaces, such as images. Additionally, we provide the theoretical error analysis for our recovered transport plans. As an application, we construct a cost functional to map data distributions while preserving the class-wise structure.

Data exploration is an important aspect of the workflow of mixed-methods researchers, who conduct both qualitative and quantitative analysis. However, there currently exists few tools that adequately support both types of analysis simultaneously, forcing researchers to context-switch between different tools and increasing their mental burden when integrating the results. To address this gap, we propose a unified environment that facilitates mixed-methods analysis in a computational notebook-based settings. We conduct a scenario study with three HCI mixed-methods researchers to gather feedback on our design concept and to understand our users' needs and requirements.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

北京阿比特科技有限公司