亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Randomized Smoothing (RS) is currently a scalable certified defense method providing robustness certification against adversarial examples. Although significant progress has been achieved in providing defenses against $\ell_p$ adversaries, the interaction between the smoothing distribution and the robustness certification still remains vague. In this work, we comprehensively study the effect of two families of distributions, named Exponential Standard Gaussian (ESG) and Exponential General Gaussian (EGG) distributions, on Randomized Smoothing and Double Sampling Randomized Smoothing (DSRS). We derive an analytic formula for ESG's certified radius, which converges to the origin formula of RS as the dimension $d$ increases. Additionally, we prove that EGG can provide tighter constant factors than DSRS in providing $\Omega(\sqrt{d})$ lower bounds of $\ell_2$ certified radius, and thus further addresses the curse of dimensionality in RS. Our experiments on real-world datasets confirm our theoretical analysis of the ESG distributions, that they provide almost the same certification under different exponents $\eta$ for both RS and DSRS. In addition, EGG brings a significant improvement to the DSRS certification, but the mechanism can be different when the classifier properties are different. Compared to the primitive DSRS, the increase in certified accuracy provided by EGG is prominent, up to 6.4% on ImageNet.

相關內容

Tokenisation is a core part of language models (LMs). It involves splitting a character sequence into subwords which are assigned arbitrary indices before being served to the LM. While typically lossless, however, this process may lead to less sample efficient LM training: as it removes character-level information, it could make it harder for LMs to generalise across similar subwords, such as now and Now. We refer to such subwords as near duplicates. In this paper, we study the impact of near duplicate subwords on LM training efficiency. First, we design an experiment that gives us an upper bound to how much we should expect a model to improve if we could perfectly generalise across near duplicates. We do this by duplicating each subword in our LM's vocabulary, creating perfectly equivalent classes of subwords. Experimentally, we find that LMs need roughly 17% more data when trained in a fully duplicated setting. Second, we investigate the impact of naturally occurring near duplicates on LMs. Here, we see that merging them considerably hurts LM performance. Therefore, although subword duplication negatively impacts LM training efficiency, naturally occurring near duplicates may not be as similar as anticipated, limiting the potential for performance improvements.

Adversarial training (AT) has become an effective defense method against adversarial examples (AEs) and it is typically framed as a bi-level optimization problem. Among various AT methods, fast AT (FAT), which employs a single-step attack strategy to guide the training process, can achieve good robustness against adversarial attacks at a low cost. However, FAT methods suffer from the catastrophic overfitting problem, especially on complex tasks or with large-parameter models. In this work, we propose a FAT method termed FGSM-PCO, which mitigates catastrophic overfitting by averting the collapse of the inner optimization problem in the bi-level optimization process. FGSM-PCO generates current-stage AEs from the historical AEs and incorporates them into the training process using an adaptive mechanism. This mechanism determines an appropriate fusion ratio according to the performance of the AEs on the training model. Coupled with a loss function tailored to the training framework, FGSM-PCO can alleviate catastrophic overfitting and help the recovery of an overfitted model to effective training. We evaluate our algorithm across three models and three datasets to validate its effectiveness. Comparative empirical studies against other FAT algorithms demonstrate that our proposed method effectively addresses unresolved overfitting issues in existing algorithms.

Generative large language models (LLMs) have been shown to exhibit harmful biases and stereotypes. While safety fine-tuning typically takes place in English, if at all, these models are being used by speakers of many different languages. There is existing evidence that the performance of these models is inconsistent across languages and that they discriminate based on demographic factors of the user. Motivated by this, we investigate whether the social stereotypes exhibited by LLMs differ as a function of the language used to prompt them, while controlling for cultural differences and task accuracy. To this end, we present MBBQ (Multilingual Bias Benchmark for Question-answering), a carefully curated version of the English BBQ dataset extended to Dutch, Spanish, and Turkish, which measures stereotypes commonly held across these languages. We further complement MBBQ with a parallel control dataset to measure task performance on the question-answering task independently of bias. Our results based on several open-source and proprietary LLMs confirm that some non-English languages suffer from bias more than English, even when controlling for cultural shifts. Moreover, we observe significant cross-lingual differences in bias behaviour for all except the most accurate models. With the release of MBBQ, we hope to encourage further research on bias in multilingual settings. The dataset and code are available at //github.com/Veranep/MBBQ.

Energy efficiency (EE) is one of the most important metrics for the beyond fifth generation (B5G) and the future sixth generation (6G) wireless networks. Reconfigurable intelligent surface (RIS) has been widely focused on EE enhancement for wireless networks because it is power-saving, programmable, and easy to be deployed. However, RIS is generally passive and thus difficult to obtain corresponding full channel state information (CSI), which severely impacts the EE enhancement of RIS-assisted wireless communications. To solve this problem, in this paper we propose the new single-active-antenna combined RIS transmitter structure, which can replace traditional multiple antennas to reduce hardware cost and power consumption. Based on the single-active-antenna combined RIS structure, we develop the Dumb RIS-Assisted Random Beamforming (Darb)-based Joint RIS-Elements and Transmit-power optimizAtion (Jeta) scheme, where dumb RIS randomly changes its phase shift according to isotropic distribution only depending on the CSI feedback from users to RIS-assisted transmitter. Then, we jointly design the number of RIS elements and optimize the transmit power to maximize the EE of RIS-assisted wireless communications. Simulation results show that compared with the traditional multi-antenna system, our developed Darb-based-Jeta scheme can significantly increase the EE without the full CSI.

Federated Learning (FL) has attracted much interest due to the significant advantages it brings to training deep neural network (DNN) models. However, since communications and computation resources are limited, training DNN models in FL systems face challenges such as elevated computational and communication costs in complex tasks. Sparse training schemes gain increasing attention in order to scale down the dimensionality of each client (i.e., node) transmission. Specifically, sparsification with error correction methods is a promising technique, where only important updates are sent to the parameter server (PS) and the rest are accumulated locally. While error correction methods have shown to achieve a significant sparsification level of the client-to-PS message without harming convergence, pushing sparsity further remains unresolved due to the staleness effect. In this paper, we propose a novel algorithm, dubbed Federated Learning with Accumulated Regularized Embeddings (FLARE), to overcome this challenge. FLARE presents a novel sparse training approach via accumulated pulling of the updated models with regularization on the embeddings in the FL process, providing a powerful solution to the staleness effect, and pushing sparsity to an exceptional level. The performance of FLARE is validated through extensive experiments on diverse and complex models, achieving a remarkable sparsity level (10 times and more beyond the current state-of-the-art) along with significantly improved accuracy. Additionally, an open-source software package has been developed for the benefit of researchers and developers in related fields.

Recently, Large Language Models (LLMs) have demonstrated great potential in various data mining tasks, such as knowledge question answering, mathematical reasoning, and commonsense reasoning. However, the reasoning capability of LLMs on temporal event forecasting has been under-explored. To systematically investigate their abilities in temporal event forecasting, we conduct a comprehensive evaluation of LLM-based methods for temporal event forecasting. Due to the lack of a high-quality dataset that involves both graph and textual data, we first construct a benchmark dataset, named MidEast-TE-mini. Based on this dataset, we design a series of baseline methods, characterized by various input formats and retrieval augmented generation(RAG) modules. From extensive experiments, we find that directly integrating raw texts into the input of LLMs does not enhance zero-shot extrapolation performance. In contrast, incorporating raw texts in specific complex events and fine-tuning LLMs significantly improves performance. Moreover, enhanced with retrieval modules, LLM can effectively capture temporal relational patterns hidden in historical events. Meanwhile, issues such as popularity bias and the long-tail problem still persist in LLMs, particularly in the RAG-based method. These findings not only deepen our understanding of LLM-based event forecasting methods but also highlight several promising research directions.We consider that this comprehensive evaluation, along with the identified research opportunities, will significantly contribute to future research on temporal event forecasting through LLMs.

Deep Neural Networks (DNNs) are vulnerable to adversarial examples, which are crafted by adding human-imperceptible perturbations to the benign inputs. Simultaneously, adversarial examples exhibit transferability across models, enabling practical black-box attacks. However, existing methods are still incapable of achieving the desired transfer attack performance. In this work, focusing on gradient optimization and consistency, we analyse the gradient elimination phenomenon as well as the local momentum optimum dilemma. To tackle these challenges, we introduce Global Momentum Initialization (GI), providing global momentum knowledge to mitigate gradient elimination. Specifically, we perform gradient pre-convergence before the attack and a global search during this stage. GI seamlessly integrates with existing transfer methods, significantly improving the success rate of transfer attacks by an average of 6.4% under various advanced defense mechanisms compared to the state-of-the-art method. Ultimately, GI demonstrates strong transferability in both image and video attack domains. Particularly, when attacking advanced defense methods in the image domain, it achieves an average attack success rate of 95.4%. The code is available at $\href{//github.com/Omenzychen/Global-Momentum-Initialization}{//github.com/Omenzychen/Global-Momentum-Initialization}$.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司