We introduce a novel approach called the Bayesian Jackknife empirical likelihood method for analyzing survey data obtained from various unequal probability sampling designs. This method is particularly applicable to parameters described by U-statistics. Theoretical proofs establish that under a non-informative prior, the Bayesian Jackknife pseudo-empirical likelihood ratio statistic converges asymptotically to a normal distribution. This statistic can be effectively employed to construct confidence intervals for complex survey samples. In this paper, we investigate various scenarios, including the presence or absence of auxiliary information and the use of design weights or calibration weights. We conduct numerical studies to assess the performance of the Bayesian Jackknife pseudo-empirical likelihood ratio confidence intervals, focusing on coverage probability and tail error rates. Our findings demonstrate that the proposed methods outperform those based solely on the jackknife pseudo-empirical likelihood, addressing its limitations.
(Strong) circular external difference families (which we denote as CEDFs and SCEDFs) can be used to construct nonmalleable threshold schemes. They are a variation of (strong) external difference families, which have been extensively studied in recent years. We provide a variety of constructions for CEDFs based on graceful labellings ($\alpha$-valuations) of lexicographic products $C_n \boldsymbol{\cdot} K_{\ell}^c$, where $C_n$ denotes a cycle of length $n$. SCEDFs having more than two subsets do not exist. However, we can construct close approximations (more specifically, certain types of circular algebraic manipulation detection (AMD) codes) using the theory of cyclotomic numbers in finite fields.
The paper's goal is to provide a simple unified approach to perform sensitivity analysis using Physics-informed neural networks (PINN). The main idea lies in adding a new term in the loss function that regularizes the solution in a small neighborhood near the nominal value of the parameter of interest. The added term represents the derivative of the loss function with respect to the parameter of interest. The result of this modification is a solution to the problem along with the derivative of the solution with respect to the parameter of interest (the sensitivity). We call the new technique to perform sensitivity analysis within this context SA-PINN. We show the effectiveness of the technique using 3 examples: the first one is a simple 1D advection-diffusion problem to show the methodology, the second is a 2D Poisson's problem with 9 parameters of interest and the last one is a transient two-phase flow in porous media problem.
A large literature specifies conditions under which the information complexity for a sequence of numerical problems defined for dimensions $1, 2, \ldots$ grows at a moderate rate, i.e., the sequence of problems is tractable. Here, we focus on the situation where the space of available information consists of all linear functionals and the problems are defined as linear operator mappings between Hilbert spaces. We unify the proofs of known tractability results and generalize a number of existing results. These generalizations are expressed as five theorems that provide equivalent conditions for (strong) tractability in terms of sums of functions of the singular values of the solution operators.
We describe a new direct method to estimate bipartite mutual information of a classical spin system based on Monte Carlo sampling enhanced by autoregressive neural networks. It allows studying arbitrary geometries of subsystems and can be generalized to classical field theories. We demonstrate it on the Ising model for four partitionings, including a multiply-connected even-odd division. We show that the area law is satisfied for temperatures away from the critical temperature: the constant term is universal, whereas the proportionality coefficient is different for the even-odd partitioning.
The success of over-parameterized neural networks trained to near-zero training error has caused great interest in the phenomenon of benign overfitting, where estimators are statistically consistent even though they interpolate noisy training data. While benign overfitting in fixed dimension has been established for some learning methods, current literature suggests that for regression with typical kernel methods and wide neural networks, benign overfitting requires a high-dimensional setting where the dimension grows with the sample size. In this paper, we show that the smoothness of the estimators, and not the dimension, is the key: benign overfitting is possible if and only if the estimator's derivatives are large enough. We generalize existing inconsistency results to non-interpolating models and more kernels to show that benign overfitting with moderate derivatives is impossible in fixed dimension. Conversely, we show that rate-optimal benign overfitting is possible for regression with a sequence of spiky-smooth kernels with large derivatives. Using neural tangent kernels, we translate our results to wide neural networks. We prove that while infinite-width networks do not overfit benignly with the ReLU activation, this can be fixed by adding small high-frequency fluctuations to the activation function. Our experiments verify that such neural networks, while overfitting, can indeed generalize well even on low-dimensional data sets.
Deep learning has made significant advances in creating efficient representations of time series data by automatically identifying complex patterns. However, these approaches lack interpretability, as the time series is transformed into a latent vector that is not easily interpretable. On the other hand, Symbolic Aggregate approximation (SAX) methods allow the creation of symbolic representations that can be interpreted but do not capture complex patterns effectively. In this work, we propose a set of requirements for a neural representation of univariate time series to be interpretable. We propose a new unsupervised neural architecture that meets these requirements. The proposed model produces consistent, discrete, interpretable, and visualizable representations. The model is learned independently of any downstream tasks in an unsupervised setting to ensure robustness. As a demonstration of the effectiveness of the proposed model, we propose experiments on classification tasks using UCR archive datasets. The obtained results are extensively compared to other interpretable models and state-of-the-art neural representation learning models. The experiments show that the proposed model yields, on average better results than other interpretable approaches on multiple datasets. We also present qualitative experiments to asses the interpretability of the approach.
This paper studies the semi-supervised novelty detection problem where a set of "typical" measurements is available to the researcher. Motivated by recent advances in multiple testing and conformal inference, we propose AdaDetect, a flexible method that is able to wrap around any probabilistic classification algorithm and control the false discovery rate (FDR) on detected novelties in finite samples without any distributional assumption other than exchangeability. In contrast to classical FDR-controlling procedures that are often committed to a pre-specified p-value function, AdaDetect learns the transformation in a data-adaptive manner to focus the power on the directions that distinguish between inliers and outliers. Inspired by the multiple testing literature, we further propose variants of AdaDetect that are adaptive to the proportion of nulls while maintaining the finite-sample FDR control. The methods are illustrated on synthetic datasets and real-world datasets, including an application in astrophysics.
Discovery of mathematical descriptors of physical phenomena from observational and simulated data, as opposed to from the first principles, is a rapidly evolving research area. Two factors, time-dependence of the inputs and hidden translation invariance, are known to complicate this task. To ameliorate these challenges, we combine Lagrangian dynamic mode decomposition with a locally time-invariant approximation of the Koopman operator. The former component of our method yields the best linear estimator of the system's dynamics, while the latter deals with the system's nonlinearity and non-autonomous behavior. We provide theoretical estimators (bounds) of prediction accuracy and perturbation error to guide the selection of both rank truncation and temporal discretization. We demonstrate the performance of our approach on several non-autonomous problems, including two-dimensional Navier-Stokes equations.
We study the stability of randomized Taylor schemes for ODEs. We consider three notions of probabilistic stability: asymptotic stability, mean-square stability, and stability in probability. We prove fundamental properties of the probabilistic stability regions and benchmark them against the absolute stability regions for deterministic Taylor schemes.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.