Large Language Models (LLMs) have shown remarkable capabilities in natural language processing, mathematical problem solving, and tasks related to program synthesis. However, their effectiveness in long-term planning and higher-order reasoning has been noted to be limited and fragile. This paper explores an approach for enhancing LLM performance in solving a classical robotic planning task by integrating solver-generated feedback. We explore four different strategies for providing feedback, including visual feedback, we utilize fine-tuning, and we evaluate the performance of three different LLMs across a 10 standard and 100 more randomly generated planning problems. Our results suggest that the solver-generated feedback improves the LLM's ability to solve the moderately difficult problems, but the harder problems still remain out of reach. The study provides detailed analysis of the effects of the different hinting strategies and the different planning tendencies of the evaluated LLMs.
We propose a novel attention mechanism, named Cog Attention, that enables attention weights to be negative for enhanced expressiveness, which stems from two key factors: (1) Cog Attention can shift the token deletion and copying function from a static OV matrix to dynamic QK inner products, with the OV matrix now focusing more on refinement or modification. The attention head can simultaneously delete, copy, or retain tokens by assigning them negative, positive, or minimal attention weights, respectively. As a result, a single attention head becomes more flexible and expressive. (2) Cog Attention improves the model's robustness against representational collapse, which can occur when earlier tokens are over-squashed into later positions, leading to homogeneous representations. Negative weights reduce effective information paths from earlier to later tokens, helping to mitigate this issue. We develop Transformer-like models which use Cog Attention as attention modules, including decoder-only models for language modeling and U-ViT diffusion models for image generation. Experiments show that models using Cog Attention exhibit superior performance compared to those employing traditional softmax attention modules. Our approach suggests a promising research direction for rethinking and breaking the entrenched constraints of traditional softmax attention, such as the requirement for non-negative weights.
Small Language Models (SLMs) are generally considered more compact versions of large language models (LLMs). This study investigates the ability of SLMs with parameters between 1 and 3 billion to learn, retain, and subsequently eliminate different types of noise present in the data. Four pre-trained SLMs were utilized for this: Olmo 1B, Qwen1.5 1.8B, Gemma 2B, and Phi2 2.7B. The models were instruction-tuned on noise-free data and tested using in-context examples to determine if they could learn noise through examples. Subsequently, noise patterns were introduced in instruction tuning to evaluate the noise learning, unlearning, and retention capabilities of the models. Olmo, the smallest model, was highly sensitive to noise, quickly adapting to noisy patterns. Phi2 resisted learning character-level and transliteration noise, likely due to its carefully curated, structured, and high-quality pretraining data. Gemma excelled with transliteration noise, likely benefiting from its multilingual pretraining. The findings can be used to develop robust training strategies for SLMs.
Large language models (LLMs) have exhibited impressive competence in various tasks, but their internal mechanisms on mathematical problems are still under-explored. In this paper, we study a fundamental question: how language models encode the value of numbers, a basic element in math. To study the question, we construct a synthetic dataset comprising addition problems and utilize linear probes to read out input numbers from the hidden states. Experimental results support the existence of encoded number values in LLMs on different layers, and these values can be extracted via linear probes. Further experiments show that LLMs store their calculation results in a similar manner, and we can intervene the output via simple vector additions, proving the causal connection between encoded numbers and language model outputs. Our research provides evidence that LLMs encode the value of numbers linearly, offering insights for better exploring, designing, and utilizing numeric information in LLMs.
Steering vectors are a promising approach to control the behaviour of large language models. However, their underlying mechanisms remain poorly understood. While sparse autoencoders (SAEs) may offer a potential method to interpret steering vectors, recent findings show that SAE-reconstructed vectors often lack the steering properties of the original vectors. This paper investigates why directly applying SAEs to steering vectors yields misleading decompositions, identifying two reasons: (1) steering vectors fall outside the input distribution for which SAEs are designed, and (2) steering vectors can have meaningful negative projections in feature directions, which SAEs are not designed to accommodate. These limitations hinder the direct use of SAEs for interpreting steering vectors.
Vector autogressions (VARs) are widely applied when it comes to modeling and forecasting macroeconomic variables. In high dimensions, however, they are prone to overfitting. Bayesian methods, more concretely shrinkage priors, have shown to be successful in improving prediction performance. In the present paper, we introduce the semi-global framework, in which we replace the traditional global shrinkage parameter with group-specific shrinkage parameters. We show how this framework can be applied to various shrinkage priors, such as global-local priors and stochastic search variable selection priors. We demonstrate the virtues of the proposed framework in an extensive simulation study and in an empirical application forecasting data of the US economy. Further, we shed more light on the ongoing ``Illusion of Sparsity'' debate, finding that forecasting performances under sparse/dense priors vary across evaluated economic variables and across time frames. Dynamic model averaging, however, can combine the merits of both worlds.
Despite the remarkable capabilities of modern large language models (LLMs), the mechanisms behind their problem-solving abilities remain elusive. In this work, we aim to better understand how the learning dynamics of LLM finetuning shapes downstream generalization. Our analysis focuses on reasoning tasks, whose problem structure allows us to distinguish between memorization (the exact replication of reasoning steps from the training data) and performance (the correctness of the final solution). We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy: the accuracy of model samples on training queries before they begin to copy the exact reasoning steps from the training set. On the dataset level, this metric is able to reliably predict test accuracy, achieving $R^2$ of around or exceeding 0.9 across various models (Llama3 8, Gemma2 9B), datasets (GSM8k, MATH), and training configurations. On a per-example level, this metric is also indicative of whether individual model predictions are robust to perturbations in the training query. By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies. We focus on data curation as an example, and show that prioritizing examples with low pre-memorization accuracy leads to 1.5-2x improvements in data efficiency compared to i.i.d. data scaling, and outperforms other standard data curation techniques.
In the post-training of large language models (LLMs), Reinforcement Learning from Human Feedback (RLHF) is an effective approach to achieve generation aligned with human preferences. Direct Preference Optimization (DPO) allows for policy training with a simple binary cross-entropy loss without a reward model. The objective of DPO is regularized by reverse KL divergence that encourages mode-seeking fitting to the reference policy. Nonetheless, we indicate that minimizing reverse KL divergence could fail to capture a mode of the reference distribution, which may hurt the policy's performance. Based on this observation, we propose a simple modification to DPO, H-DPO, which allows for control over the entropy of the resulting policy, enhancing the distribution's sharpness and thereby enabling mode-seeking fitting more effectively. In our experiments, we show that H-DPO outperformed DPO across various tasks, demonstrating superior results in pass@$k$ evaluations for mathematical tasks. Moreover, H-DPO is simple to implement, requiring only minor modifications to the loss calculation of DPO, which makes it highly practical and promising for wide-ranging applications in the training of LLMs.
Graph Convolutional Networks (GCNs) have recently become the primary choice for learning from graph-structured data, superseding hash fingerprints in representing chemical compounds. However, GCNs lack the ability to take into account the ordering of node neighbors, even when there is a geometric interpretation of the graph vertices that provides an order based on their spatial positions. To remedy this issue, we propose Geometric Graph Convolutional Network (geo-GCN) which uses spatial features to efficiently learn from graphs that can be naturally located in space. Our contribution is threefold: we propose a GCN-inspired architecture which (i) leverages node positions, (ii) is a proper generalisation of both GCNs and Convolutional Neural Networks (CNNs), (iii) benefits from augmentation which further improves the performance and assures invariance with respect to the desired properties. Empirically, geo-GCN outperforms state-of-the-art graph-based methods on image classification and chemical tasks.
Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.
Text Classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.