亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

PDE-constrained inverse problems are some of the most challenging and computationally demanding problems in computational science today. Fine meshes that are required to accurately compute the PDE solution introduce an enormous number of parameters and require large scale computing resources such as more processors and more memory to solve such systems in a reasonable time. For inverse problems constrained by time dependent PDEs, the adjoint method that is often employed to efficiently compute gradients and higher order derivatives requires solving a time-reversed, so-called adjoint PDE that depends on the forward PDE solution at each timestep. This necessitates the storage of a high dimensional forward solution vector at every timestep. Such a procedure quickly exhausts the available memory resources. Several approaches that trade additional computation for reduced memory footprint have been proposed to mitigate the memory bottleneck, including checkpointing and compression strategies. In this work, we propose a close-to-ideal scalable compression approach using autoencoders to eliminate the need for checkpointing and substantial memory storage, thereby reducing both the time-to-solution and memory requirements. We compare our approach with checkpointing and an off-the-shelf compression approach on an earth-scale ill-posed seismic inverse problem. The results verify the expected close-to-ideal speedup for both the gradient and Hessian-vector product using the proposed autoencoder compression approach. To highlight the usefulness of the proposed approach, we combine the autoencoder compression with the data-informed active subspace (DIAS) prior to show how the DIAS method can be affordably extended to large scale problems without the need of checkpointing and large memory.

相關內容

Datasets with sheer volume have been generated from fields including computer vision, medical imageology, and astronomy whose large-scale and high-dimensional properties hamper the implementation of classical statistical models. To tackle the computational challenges, one of the efficient approaches is subsampling which draws subsamples from the original large datasets according to a carefully-design task-specific probability distribution to form an informative sketch. The computation cost is reduced by applying the original algorithm to the substantially smaller sketch. Previous studies associated with subsampling focused on non-regularized regression from the computational efficiency and theoretical guarantee perspectives, such as ordinary least square regression and logistic regression. In this article, we introduce a randomized algorithm under the subsampling scheme for the Elastic-net regression which gives novel insights into L1-norm regularized regression problem. To effectively conduct consistency analysis, a smooth approximation technique based on alpha absolute function is firstly employed and theoretically verified. The concentration bounds and asymptotic normality for the proposed randomized algorithm are then established under mild conditions. Moreover, an optimal subsampling probability is constructed according to A-optimality. The effectiveness of the proposed algorithm is demonstrated upon synthetic and real data datasets.

This paper introduces a new neural-network-based approach, namely In-Context Operator Networks (ICON), to simultaneously learn operators from the prompted data and apply it to new questions during the inference stage, without any weight update. Existing methods are limited to using a neural network to approximate a specific equation solution or a specific operator, requiring retraining when switching to a new problem with different equations. By training a single neural network as an operator learner, we can not only get rid of retraining (even fine-tuning) the neural network for new problems, but also leverage the commonalities shared across operators so that only a few demos in the prompt are needed when learning a new operator. Our numerical results show the neural network's capability as a few-shot operator learner for a diversified type of differential equation problems, including forward and inverse problems of ordinary differential equations (ODEs), partial differential equations (PDEs), and mean-field control (MFC) problems, and also show that it can generalize its learning capability to operators beyond the training distribution.

We consider the ubiquitous linear inverse problems with additive Gaussian noise and propose an unsupervised sampling approach called diffusion model based posterior sampling (DMPS) to reconstruct the unknown signal from noisy linear measurements. Specifically, using one diffusion model (DM) as an implicit prior, the fundamental difficulty in performing posterior sampling is that the noise-perturbed likelihood score, i.e., gradient of an annealed likelihood function, is intractable. To circumvent this problem, we introduce a simple yet effective closed-form approximation of it using an uninformative prior assumption. Extensive experiments are conducted on a variety of noisy linear inverse problems such as noisy super-resolution, denoising, deblurring, and colorization. In all tasks, the proposed DMPS demonstrates highly competitive or even better performances on various tasks while being 3 times faster than the state-of-the-art competitor diffusion posterior sampling (DPS). The code to reproduce the results is available at //github.com/mengxiangming/dmps.

Cross-validation (CV) is one of the most popular tools for assessing and selecting predictive models. However, standard CV suffers from high computational cost when the number of folds is large. Recently, under the empirical risk minimization (ERM) framework, a line of works proposed efficient methods to approximate CV based on the solution of the ERM problem trained on the full dataset. However, in large-scale problems, it can be hard to obtain the exact solution of the ERM problem, either due to limited computational resources or due to early stopping as a way of preventing overfitting. In this paper, we propose a new paradigm to efficiently approximate CV when the ERM problem is solved via an iterative first-order algorithm, without running until convergence. Our new method extends existing guarantees for CV approximation to hold along the whole trajectory of the algorithm, including at convergence, thus generalizing existing CV approximation methods. Finally, we illustrate the accuracy and computational efficiency of our method through a range of empirical studies.

Analog compute-in-memory (CIM) systems are promising for deep neural network (DNN) inference acceleration due to their energy efficiency and high throughput. However, as the use of DNNs expands, protecting user input privacy has become increasingly important. In this paper, we identify a potential security vulnerability wherein an adversary can reconstruct the user's private input data from a power side-channel attack, under proper data acquisition and pre-processing, even without knowledge of the DNN model. We further demonstrate a machine learning-based attack approach using a generative adversarial network (GAN) to enhance the data reconstruction. Our results show that the attack methodology is effective in reconstructing user inputs from analog CIM accelerator power leakage, even at large noise levels and after countermeasures are applied. Specifically, we demonstrate the efficacy of our approach on an example of U-Net inference chip for brain tumor detection, and show the original magnetic resonance imaging (MRI) medical images can be successfully reconstructed even at a noise-level of 20% standard deviation of the maximum power signal value. Our study highlights a potential security vulnerability in analog CIM accelerators and raises awareness of using GAN to breach user privacy in such systems.

With the high focus on autonomous aerial refueling recently, it becomes increasingly urgent to design efficient methods or algorithms to solve AAR problems in complicated aerial environments. Apart from the complex aerodynamic disturbance, another problem is the pose estimation error caused by the camera calibration error, installation error, or 3D object modeling error, which may not satisfy the highly accurate docking. The main objective of the effort described in this paper is the implementation of an image-based visual servo control method, which contains the establishment of an image-based visual servo model involving the receiver's dynamics and the design of the corresponding controller. Simulation results indicate that the proposed method can make the system dock successfully under complicated conditions and improve the robustness against pose estimation error.

Recently, diffusion models have demonstrated a remarkable ability to solve inverse problems in an unsupervised manner. Existing methods mainly focus on modifying the posterior sampling process while neglecting the potential of the forward process. In this work, we propose Shortcut Sampling for Diffusion (SSD), a novel pipeline for solving inverse problems. Instead of initiating from random noise, the key concept of SSD is to find the "Embryo", a transitional state that bridges the measurement image y and the restored image x. By utilizing the "shortcut" path of "input-Embryo-output", SSD can achieve precise and fast restoration. To obtain the Embryo in the forward process, We propose Distortion Adaptive Inversion (DA Inversion). Moreover, we apply back projection and attention injection as additional consistency constraints during the generation process. Experimentally, we demonstrate the effectiveness of SSD on several representative tasks, including super-resolution, deblurring, and colorization. Compared to state-of-the-art zero-shot methods, our method achieves competitive results with only 30 NFEs. Moreover, SSD with 100 NFEs can outperform state-of-the-art zero-shot methods in certain tasks.

Denoising Diffusion Probabilistic Models (DDPM) have shown remarkable efficacy in the synthesis of high-quality images. However, their inference process characteristically requires numerous, potentially hundreds, of iterative steps, which could lead to the problem of exposure bias due to the accumulation of prediction errors over iterations. Previous work has attempted to mitigate this issue by perturbing inputs during training, which consequently mandates the retraining of the DDPM. In this work, we conduct a systematic study of exposure bias in diffusion models and, intriguingly, we find that the exposure bias could be alleviated with a new sampling method, without retraining the model. We empirically and theoretically show that, during inference, for each backward time step $t$ and corresponding state $\hat{x}_t$, there might exist another time step $t_s$ which exhibits superior coupling with $\hat{x}_t$. Based on this finding, we introduce an inference method named Time-Shift Sampler. Our framework can be seamlessly integrated with existing sampling algorithms, such as DDIM or DDPM, inducing merely minimal additional computations. Experimental results show that our proposed framework can effectively enhance the quality of images generated by existing sampling algorithms.

Most modern imaging systems incorporate a computational pipeline to infer the image of interest from acquired measurements. The Bayesian approach to solve such ill-posed inverse problems involves the characterization of the posterior distribution of the image. It depends on the model of the imaging system and on prior knowledge on the image of interest. In this work, we present a Bayesian reconstruction framework for nonlinear imaging models where we specify the prior knowledge on the image through a deep generative model. We develop a tractable posterior-sampling scheme based on the Metropolis-adjusted Langevin algorithm for the class of nonlinear inverse problems where the forward model has a neural-network-like structure. This class includes most practical imaging modalities. We introduce the notion of augmented deep generative priors in order to suitably handle the recovery of quantitative images.We illustrate the advantages of our framework by applying it to two nonlinear imaging modalities-phase retrieval and optical diffraction tomography.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司