亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This volume contains the proceedings of the 7th Working Formal Methods Symposium, which was held at the University of Bucharest, September 21-22, 2023.

相關內容

The use of Evolutionary Algorithms (EA) for solving Mathematical/Computational Optimization Problems is inspired by the biological processes of Evolution. Few of the primitives involved in the Evolutionary process/paradigm are selection of 'Fit' individuals (from a population sample) for retention, cloning, mutation, discarding, breeding, crossover etc. In the Evolutionary Algorithm abstraction, the individuals are deemed to be solution candidates to an Optimization problem and additional solution(/sets) are built by applying analogies to the above primitives (cloning, mutation etc.) by means of evaluating a 'Fitness' function/criterion. One such algorithm is Differential Evolution (DE) which can be used to compute the minima of functions such as the rastrigin function and rosenbrock function. This work is an attempt to study the result of applying the DE method on these functions with candidate individuals generated on classical Turing modeled computation and comparing the same with those on state of the art Quantum computation.The study benchmarks the convergence of these functions by varying the parameters initialized and reports timing, convergence, and resource utilization results.

Here we introduce an improved approach to Variational Quantum Attack Algorithms (VQAA) on crytographic protocols. Our methods provide robust quantum attacks to well-known cryptographic algorithms, more efficiently and with remarkably fewer qubits than previous approaches. We implement simulations of our attacks for symmetric-key protocols such as S-DES, S-AES and Blowfish. For instance, we show how our attack allows a classical simulation of a small 8-qubit quantum computer to find the secret key of one 32-bit Blowfish instance with 24 times fewer number of iterations than a brute-force attack. Our work also shows improvements in attack success rates for lightweight ciphers such as S-DES and S-AES. Further applications beyond symmetric-key cryptography are also discussed, including asymmetric-key protocols and hash functions. In addition, we also comment on potential future improvements of our methods. Our results bring one step closer assessing the vulnerability of large-size classical cryptographic protocols with Noisy Intermediate-Scale Quantum (NISQ) devices, and set the stage for future research in quantum cybersecurity.

Fish tracking is a key technology for obtaining movement trajectories and identifying abnormal behavior. However, it faces considerable challenges, including occlusion, multi-scale tracking, and fish deformation. Notably, extant reviews have focused more on behavioral analysis rather than providing a comprehensive overview of computer vision-based fish tracking approaches. This paper presents a comprehensive review of the advancements of fish tracking technologies over the past seven years (2017-2023). It explores diverse fish tracking techniques with an emphasis on fundamental localization and tracking methods. Auxiliary plugins commonly integrated into fish tracking systems, such as underwater image enhancement and re-identification, are also examined. Additionally, this paper summarizes open-source datasets, evaluation metrics, challenges, and applications in fish tracking research. Finally, a comprehensive discussion offers insights and future directions for vision-based fish tracking techniques. We hope that our work could provide a partial reference in the development of fish tracking algorithms.

In this short paper we present a survey of some results concerning the random SAT problems. To elaborate, the Boolean Satisfiability (SAT) Problem refers to the problem of determining whether a given set of $m$ Boolean constraints over $n$ variables can be simultaneously satisfied, i.e. all evaluate to $1$ under some interpretation of the variables in $\{ 0,1\}$. If we choose the $m$ constraints i.i.d. uniformly at random among the set of disjunctive clauses of length $k$, then the problem is known as the random $k$-SAT problem. It is conjectured that this problem undergoes a structural phase transition; taking $m=\alpha n$ for $\alpha>0$, it is believed that the probability of there existing a satisfying assignment tends in the large $n$ limit to $1$ if $\alpha<\alpha_\mathrm{sat}(k)$, and to $0$ if $\alpha>\alpha_\mathrm{sat}(k)$, for some critical value $\alpha_\mathrm{sat}(k)$ depending on $k$. We review some of the progress made towards proving this and consider similar conjectures and results for the more general case where the clauses are chosen with varying lengths, i.e. for the so-called random mixed SAT problems.

Recent studies have discovered that Chain-of-Thought prompting (CoT) can dramatically improve the performance of Large Language Models (LLMs), particularly when dealing with complex tasks involving mathematics or reasoning. Despite the enormous empirical success, the underlying mechanisms behind CoT and how it unlocks the potential of LLMs remain elusive. In this paper, we take a first step towards theoretically answering these questions. Specifically, we examine the expressivity of LLMs with CoT in solving fundamental mathematical and decision-making problems. By using circuit complexity theory, we first give impossibility results showing that bounded-depth Transformers are unable to directly produce correct answers for basic arithmetic/equation tasks unless the model size grows super-polynomially with respect to the input length. In contrast, we then prove by construction that autoregressive Transformers of constant size suffice to solve both tasks by generating CoT derivations using a commonly used math language format. Moreover, we show LLMs with CoT can handle a general class of decision-making problems known as Dynamic Programming, thus justifying its power in tackling complex real-world tasks. Finally, an extensive set of experiments show that, while Transformers always fail to directly predict the answers, they can consistently learn to generate correct solutions step-by-step given sufficient CoT demonstrations.

We outline an unsupervised method for temporal rank ordering of sets of historical documents, namely American State of the Union Addresses and DEEDS, a corpus of medieval English property transfer documents. Our method relies upon effectively capturing the gradual change in word usage via a bandwidth estimate for the non-parametric Generalized Linear Models (Fan, Heckman, and Wand, 1995). The number of possible rank orders needed to search through possible cost functions related to the bandwidth can be quite large, even for a small set of documents. We tackle this problem of combinatorial optimization using the Simulated Annealing algorithm, which allows us to obtain the optimal document temporal orders. Our rank ordering method significantly improved the temporal sequencing of both corpora compared to a randomly sequenced baseline. This unsupervised approach should enable the temporal ordering of undated document sets.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

小貼士
登錄享
相關主題
北京阿比特科技有限公司