Large language models (LLMs) have shown great progress in responding to user questions, allowing for a multitude of diverse applications. Yet, the quality of LLM outputs heavily depends on the prompt design, where a good prompt might enable the LLM to answer a very challenging question correctly. Therefore, recent works have developed many strategies for improving the prompt, including both manual crafting and in-domain optimization. However, their efficacy in unrestricted scenarios remains questionable, as the former depends on human design for specific questions and the latter usually generalizes poorly to unseen scenarios. To address these problems, we give LLMs the freedom to design the best prompts according to themselves. Specifically, we include a hierarchy of LLMs, first constructing a prompt with precise instructions and accurate wording in a hierarchical manner, and then using this prompt to generate the final answer to the user query. We term this pipeline Hierarchical Multi-Agent Workflow, or HMAW. In contrast with prior works, HMAW imposes no human restriction and requires no training, and is completely task-agnostic while capable of adjusting to the nuances of the underlying task. Through both quantitative and qualitative experiments across multiple benchmarks, we verify that despite its simplicity, the proposed approach can create detailed and suitable prompts, further boosting the performance of current LLMs.
Large language models (LLMs) have made significant advancements in natural language understanding. However, through that enormous semantic representation that the LLM has learnt, is it somehow possible for it to understand images as well? This work investigates this question. To enable the LLM to process images, we convert them into a representation given by Scalable Vector Graphics (SVG). To study what the LLM can do with this XML-based textual description of images, we test the LLM on three broad computer vision tasks: (i) visual reasoning and question answering, (ii) image classification under distribution shift, few-shot learning, and (iii) generating new images using visual prompting. Even though we do not naturally associate LLMs with any visual understanding capabilities, our results indicate that the LLM can often do a decent job in many of these tasks, potentially opening new avenues for research into LLMs' ability to understand image data. Our code, data, and models can be found here //github.com/mu-cai/svg-llm.
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material. These models can memorize and generate content similar to their training data, posing potential concerns. Therefore, model creators are motivated to develop mitigation methods that prevent generating protected content. We term this procedure as copyright takedowns for LMs, noting the conceptual similarity to (but legal distinction from) the DMCA takedown This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs. We propose CoTaEval, an evaluation framework to assess the effectiveness of copyright takedown methods, the impact on the model's ability to retain uncopyrightable factual knowledge from the training data whose recitation is embargoed, and how well the model maintains its general utility and efficiency. We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches. Our findings indicate that no tested method excels across all metrics, showing significant room for research in this unique problem setting and indicating potential unresolved challenges for live policy proposals.
The spiking neural networks (SNNs) that efficiently encode temporal sequences have shown great potential in extracting audio-visual joint feature representations. However, coupling SNNs (binary spike sequences) with transformers (float-point sequences) to jointly explore the temporal-semantic information still facing challenges. In this paper, we introduce a novel Spiking Tucker Fusion Transformer (STFT) for audio-visual zero-shot learning (ZSL). The STFT leverage the temporal and semantic information from different time steps to generate robust representations. The time-step factor (TSF) is introduced to dynamically synthesis the subsequent inference information. To guide the formation of input membrane potentials and reduce the spike noise, we propose a global-local pooling (GLP) which combines the max and average pooling operations. Furthermore, the thresholds of the spiking neurons are dynamically adjusted based on semantic and temporal cues. Integrating the temporal and semantic information extracted by SNNs and Transformers are difficult due to the increased number of parameters in a straightforward bilinear model. To address this, we introduce a temporal-semantic Tucker fusion module, which achieves multi-scale fusion of SNN and Transformer outputs while maintaining full second-order interactions. Our experimental results demonstrate the effectiveness of the proposed approach in achieving state-of-the-art performance in three benchmark datasets. The harmonic mean (HM) improvement of VGGSound, UCF101 and ActivityNet are around 15.4\%, 3.9\%, and 14.9\%, respectively.
We investigate practical and scalable algorithms for training large language models (LLMs) with user-level differential privacy (DP) in order to provably safeguard all the examples contributed by each user. We study two variants of DP-SGD with: (1) example-level sampling (ELS) and per-example gradient clipping, and (2) user-level sampling (ULS) and per-user gradient clipping. We derive a novel user-level DP accountant that allows us to compute provably tight privacy guarantees for ELS. Using this, we show that while ELS can outperform ULS in specific settings, ULS generally yields better results when each user has a diverse collection of examples. We validate our findings through experiments in synthetic mean estimation and LLM fine-tuning tasks under fixed compute budgets. We find that ULS is significantly better in settings where either (1) strong privacy guarantees are required, or (2) the compute budget is large. Notably, our focus on LLM-compatible training algorithms allows us to scale to models with hundreds of millions of parameters and datasets with hundreds of thousands of users.
In recent years, dual-target Cross-Domain Recommendation (CDR) has been proposed to capture comprehensive user preferences in order to ultimately enhance the recommendation accuracy in both data-richer and data-sparser domains simultaneously. However, in addition to users' true preferences, the user-item interactions might also be affected by confounders (e.g., free shipping, sales promotion). As a result, dual-target CDR has to meet two challenges: (1) how to effectively decouple observed confounders, including single-domain confounders and cross-domain confounders, and (2) how to preserve the positive effects of observed confounders on predicted interactions, while eliminating their negative effects on capturing comprehensive user preferences. To address the above two challenges, we propose a Causal Deconfounding framework via Confounder Disentanglement for dual-target Cross-Domain Recommendation, called CD2CDR. In CD2CDR, we first propose a confounder disentanglement module to effectively decouple observed single-domain and cross-domain confounders. We then propose a causal deconfounding module to preserve the positive effects of such observed confounders and eliminate their negative effects via backdoor adjustment, thereby enhancing the recommendation accuracy in each domain. Extensive experiments conducted on five real-world datasets demonstrate that CD2CDR significantly outperforms the state-of-the-art methods.
Recent studies suggest that with sufficiently wide models, most SGD solutions can, up to permutation, converge into the same basin. This phenomenon, known as the model re-basin regime, has significant implications for model averaging by ensuring the linear mode connectivity. However, current re-basin strategies are ineffective in many scenarios due to a lack of comprehensive understanding of underlying mechanisms. Addressing this gap, this paper provides novel insights into understanding and improving the standard practice. Firstly, we decompose re-normalization into rescaling and reshift, uncovering that rescaling plays a crucial role in re-normalization while re-basin performance is sensitive to shifts in model activation. The finding calls for a more nuanced handling of the activation shift. Secondly, we identify that the merged model suffers from the issue of activation collapse and magnitude collapse. Varying the learning rate, weight decay, and initialization method can mitigate the issues and improve model performance. Lastly, we propose a new perspective to unify the re-basin and pruning, under which a lightweight yet effective post-pruning technique is derived, which can significantly improve the model performance after pruning. Our implementation is available at //github.com/XingyuQu/rethink-re-basin.
While large language models (LLMs) have demonstrated superior multi-task capabilities, understanding the learning mechanisms behind this is still a challenging problem. In this paper, we attempt to understand such mechanisms from the perspective of neurons. Specifically, we detect task-sensitive neurons in LLMs via gradient attribution on task-specific data. Through extensive deactivation and fine-tuning experiments, we demonstrate that the detected neurons are highly correlated with the given task, which we term as task-specific neurons. With these identified task-specific neurons, we delve into two common problems in multi-task learning and continuous learning: Generalization and Catastrophic Forgetting. We find that the overlap of task-specific neurons is strongly associated with generalization and specialization across tasks. Interestingly, at certain layers of LLMs, there is a high similarity in the parameters of different task-specific neurons, and such similarity is highly correlated with the generalization performance. Inspired by these findings, we propose a neuron-level continuous fine-tuning method that only fine-tunes the current task-specific neurons during continuous learning, and extensive experiments demonstrate the effectiveness of the proposed method. Our study provides insights into the interpretability of LLMs in multi-task learning.
Despite advances in AI alignment, large language models (LLMs) remain vulnerable to adversarial attacks or jailbreaking, in which adversaries can modify prompts to induce unwanted behavior. While some defenses have been proposed, they have not been adapted to newly proposed attacks and more challenging threat models. To address this, we propose an optimization-based objective for defending LLMs against jailbreaking attacks and an algorithm, Robust Prompt Optimization (RPO) to create robust system-level defenses. Our approach directly incorporates the adversary into the defensive objective and optimizes a lightweight and transferable suffix, enabling RPO to adapt to worst-case adaptive attacks. Our theoretical and experimental results show improved robustness to both jailbreaks seen during optimization and unknown jailbreaks, reducing the attack success rate (ASR) on GPT-4 to 6% and Llama-2 to 0% on JailbreakBench, setting the state-of-the-art. Code can be found at //github.com/lapisrocks/rpo
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).