亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the field of topological data analysis, persistence modules are used to express geometrical features of data sets. The matching distance $d_\mathcal{M}$ measures the difference between $2$-parameter persistence modules by taking the maximum bottleneck distance between $1$-parameter slices of the modules. The previous fastest algorithm to compute $d_\mathcal{M}$ exactly runs in $O(n^{8+\omega})$, where $\omega$ is the matrix multiplication constant. We improve significantly on this by describing an algorithm with expected running time $O(n^5 \log^3 n)$. We first solve the decision problem $d_\mathcal{M}\leq \lambda$ for a constant $\lambda$ in $O(n^5\log n)$ by traversing a line arrangement in the dual plane, where each point represents a slice. Then we lift the line arrangement to a plane arrangement in $\mathbb{R}^3$ whose vertices represent possible values for $d_\mathcal{M}$, and use a randomized incremental method to search through the vertices and find $d_\mathcal{M}$. The expected running time of this algorithm is $O((n^4+T(n))\log^2 n)$, where $T(n)$ is an upper bound for the complexity of deciding if $d_\mathcal{M}\leq \lambda$.

相關內容

Although the theory of constrained least squares (CLS) estimation is well known, it is usually applied with the view that the constraints to be imposed are unavoidable. However, there are cases in which constraints are optional. For example, in camera color calibration, one of several possible color processing systems is obtained if a constraint on the row sums of a desired color correction matrix is imposed; in this example, it is not clear a priori whether imposing the constraint leads to better system performance. In this paper, we derive an exact expression connecting the constraint to the increase in fitting error obtained from imposing it. As another contribution, we show how to determine projection matrices that separate the measured data into two components: the first component drives up the fitting error due to imposing a constraint, and the second component is unaffected by the constraint. We demonstrate the use of these results in the color calibration problem.

We propose the homotopic policy mirror descent (HPMD) method for solving discounted, infinite horizon MDPs with finite state and action space, and study its policy convergence. We report three properties that seem to be new in the literature of policy gradient methods: (1) The policy first converges linearly, then superlinearly with order $\gamma^{-2}$ to the set of optimal policies, after $\mathcal{O}(\log(1/\Delta^*))$ number of iterations, where $\Delta^*$ is defined via a gap quantity associated with the optimal state-action value function; (2) HPMD also exhibits last-iterate convergence, with the limiting policy corresponding exactly to the optimal policy with the maximal entropy for every state. No regularization is added to the optimization objective and hence the second observation arises solely as an algorithmic property of the homotopic policy gradient method. (3) For the stochastic HPMD method, we demonstrate a better than $\mathcal{O}(|\mathcal{S}| |\mathcal{A}| / \epsilon^2)$ sample complexity for small optimality gap $\epsilon$, when assuming a generative model for policy evaluation.

We study synchronous Q-learning with Polyak-Ruppert averaging (a.k.a., averaged Q-learning) in a $\gamma$-discounted MDP. We establish a functional central limit theorem (FCLT) for the averaged iteration $\bar{\boldsymbol{Q}}_T$ and show its standardized partial-sum process weakly converges to a rescaled Brownian motion. Furthermore, we show that $\bar{\boldsymbol{Q}}_T$ is actually a regular asymptotically linear (RAL) estimator for the optimal Q-value function $\boldsymbol{Q}^*$ with the most efficient influence function. This implies the averaged Q-learning iteration has the smallest asymptotic variance among all RAL estimators. In addition, we present a non-asymptotic analysis for the $\ell_{\infty}$ error $\mathbb{E}\|\bar{\boldsymbol{Q}}_T-\boldsymbol{Q}^*\|_{\infty}$, showing for polynomial step sizes it matches the instance-dependent lower bound as well as the optimal minimax complexity lower bound. In short, our theoretical analysis shows averaged Q-learning is statistically efficient.

We consider the task of learning causal structures from data stored on multiple machines, and propose a novel structure learning method called distributed annealing on regularized likelihood score (DARLS) to solve this problem. We model causal structures by a directed acyclic graph that is parameterized with generalized linear models, so that our method is applicable to various types of data. To obtain a high-scoring causal graph, DARLS simulates an annealing process to search over the space of topological sorts, where the optimal graphical structure compatible with a sort is found by a distributed optimization method. This distributed optimization relies on multiple rounds of communication between local and central machines to estimate the optimal structure. We establish its convergence to a global optimizer of the overall score that is computed on all data across local machines. To the best of our knowledge, DARLS is the first distributed method for learning causal graphs with such theoretical guarantees. Through extensive simulation studies, DARLS has shown competing performance against existing methods on distributed data, and achieved comparable structure learning accuracy and test-data likelihood with competing methods applied to pooled data across all local machines. In a real-world application for modeling protein-DNA binding networks with distributed ChIP-Sequencing data, DARLS also exhibits higher predictive power than other methods, demonstrating a great advantage in estimating causal networks from distributed data.

Let $P$ be a polyhedron, defined by a system $A x \leq b$, where $A \in Z^{m \times n}$, $rank(A) = n$, and $b \in Z^{m}$. In the Integer Feasibility Problem, we need to decide whether $P \cap Z^n = \emptyset$ or to find some $x \in P \cap Z^n$ in the opposite case. Currently, its state of the art algorithm, due to \cite{DadushDis,DadushFDim} (see also \cite{Convic,ConvicComp,DConvic} for more general formulations), has the complexity bound $O(n)^n \cdot poly(\phi)$, where $\phi = size(A,b)$. It is a long-standing open problem to break the $O(n)^n$ dimension-dependence in the complexity of ILP algorithms. We show that if the matrix $A$ has a small $l_1$ or $l_\infty$ norm, or $A$ is sparse and has bounded elements, then the integer feasibility problem can be solved faster. More precisely, we give the following complexity bounds \begin{gather*} \min\{\|A\|_{\infty}, \|A\|_1\}^{5 n} \cdot 2^n \cdot poly(\phi), \bigl( \|A\|_{\max} \bigr)^{5 n} \cdot \min\{cs(A),rs(A)\}^{3 n} \cdot 2^n \cdot poly(\phi). \end{gather*} Here $\|A\|_{\max}$ denotes the maximal absolute value of elements of $A$, $cs(A)$ and $rs(A)$ denote the maximal number of nonzero elements in columns and rows of $A$, respectively. We present similar results for the integer linear counting and optimization problems. Additionally, we apply the last result for multipacking and multicover problems on graphs and hypergraphs, where we need to choose a minimal/maximal multiset of vertices to cover/pack the edges by a prescribed number of times. For example, we show that the stable multiset and vertex multicover problems on simple graphs admit FPT-algorithms with the complexity bound $2^{O(|V|)} \cdot poly(\phi)$, where $V$ is the vertex set of a given graph.

Consider a set $P$ of $n$ points in $\mathbb{R}^d$. In the discrete median line segment problem, the objective is to find a line segment bounded by a pair of points in $P$ such that the sum of the Euclidean distances from $P$ to the line segment is minimized. In the continuous median line segment problem, a real number $\ell>0$ is given, and the goal is to locate a line segment of length $\ell$ in $\mathbb{R}^d$ such that the sum of the Euclidean distances between $P$ and the line segment is minimized. To begin with, we show how to compute $(1+\epsilon\Delta)$- and $(1+\epsilon)$-approximations to a discrete median line segment in time $O(n\epsilon^{-2d}\log n)$ and $O(n^2\epsilon^{-d})$, respectively, where $\Delta$ is the spread of line segments spanned by pairs of points. While developing our algorithms, by using the principle of pair decomposition, we derive new data structures that allow us to quickly approximate the sum of the distances from a set of points to a given line segment or point. To our knowledge, our utilization of pair decompositions for solving minsum facility location problems is the first of its kind -- it is versatile and easily implementable. Furthermore, we prove that it is impossible to construct a continuous median line segment for $n\geq3$ non-collinear points in the plane by using only ruler and compass. In view of this, we present an $O(n^d\epsilon^{-d})$-time algorithm for approximating a continuous median line segment in $\mathbb{R}^d$ within a factor of $1+\epsilon$. The algorithm is based upon generalizing the point-segment pair decomposition from the discrete to the continuous domain. Last but not least, we give an $(1+\epsilon)$-approximation algorithm, whose time complexity is sub-quadratic in $n$, for solving the constrained median line segment problem in $\mathbb{R}^2$ where an endpoint or the slope of the median line segment is given at input.

We propose the first algorithm for non-rigid 2D-to-3D shape matching, where the input is a 2D shape represented as a planar curve and a 3D shape represented as a surface; the output is a continuous curve on the surface. We cast the problem as finding the shortest circular path on the product 3-manifold of the surface and the curve. We prove that the optimal matching can be computed in polynomial time with a (worst-case) complexity of $O(mn^2\log(n))$, where $m$ and $n$ denote the number of vertices on the template curve and the 3D shape respectively. We also demonstrate that in practice the runtime is essentially linear in $m\!\cdot\! n$ making it an efficient method for shape analysis and shape retrieval. Quantitative evaluation confirms that the method provides excellent results for sketch-based deformable 3D shape retrieval.

We study sparse linear regression over a network of agents, modeled as an undirected graph and no server node. The estimation of the $s$-sparse parameter is formulated as a constrained LASSO problem wherein each agent owns a subset of the $N$ total observations. We analyze the convergence rate and statistical guarantees of a distributed projected gradient tracking-based algorithm under high-dimensional scaling, allowing the ambient dimension $d$ to grow with (and possibly exceed) the sample size $N$. Our theory shows that, under standard notions of restricted strong convexity and smoothness of the loss functions, suitable conditions on the network connectivity and algorithm tuning, the distributed algorithm converges globally at a {\it linear} rate to an estimate that is within the centralized {\it statistical precision} of the model, $O(s\log d/N)$. When $s\log d/N=o(1)$, a condition necessary for statistical consistency, an $\varepsilon$-optimal solution is attained after $\mathcal{O}(\kappa \log (1/\varepsilon))$ gradient computations and $O (\kappa/(1-\rho) \log (1/\varepsilon))$ communication rounds, where $\kappa$ is the restricted condition number of the loss function and $\rho$ measures the network connectivity. The computation cost matches that of the centralized projected gradient algorithm despite having data distributed; whereas the communication rounds reduce as the network connectivity improves. Overall, our study reveals interesting connections between statistical efficiency, network connectivity \& topology, and convergence rate in high dimensions.

Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

北京阿比特科技有限公司