The Segment Anything Model (SAM) is a recently proposed prompt-based segmentation model in a generic zero-shot segmentation approach. With the zero-shot segmentation capacity, SAM achieved impressive flexibility and precision on various segmentation tasks. However, the current pipeline requires manual prompts during the inference stage, which is still resource intensive for biomedical image segmentation. In this paper, instead of using prompts during the inference stage, we introduce a pipeline that utilizes the SAM, called all-in-SAM, through the entire AI development workflow (from annotation generation to model finetuning) without requiring manual prompts during the inference stage. Specifically, SAM is first employed to generate pixel-level annotations from weak prompts (e.g., points, bounding box). Then, the pixel-level annotations are used to finetune the SAM segmentation model rather than training from scratch. Our experimental results reveal two key findings: 1) the proposed pipeline surpasses the state-of-the-art (SOTA) methods in a nuclei segmentation task on the public Monuseg dataset, and 2) the utilization of weak and few annotations for SAM finetuning achieves competitive performance compared to using strong pixel-wise annotated data.
We introduce Deceptive-NeRF, a novel methodology for few-shot NeRF reconstruction, which leverages diffusion models to synthesize plausible pseudo-observations to improve the reconstruction. This approach unfolds through three key steps: 1) reconstructing a coarse NeRF from sparse input data; 2) utilizing the coarse NeRF to render images and subsequently generating pseudo-observations based on them; 3) training a refined NeRF model utilizing input images augmented with pseudo-observations. We develop a deceptive diffusion model that adeptly transitions RGB images and depth maps from coarse NeRFs into photo-realistic pseudo-observations, all while preserving scene semantics for reconstruction. Furthermore, we propose a progressive strategy for training the Deceptive-NeRF, using the current NeRF renderings to create pseudo-observations that enhance the next iteration's NeRF. Extensive experiments demonstrate that our approach is capable of synthesizing photo-realistic novel views, even for highly complex scenes with very sparse inputs. Codes will be released.
Previous zero-shot dialogue state tracking (DST) methods only apply transfer learning, but ignore unlabelled data in the target domain. We transform zero-shot DST into few-shot DST by utilising such unlabelled data via joint and self-training methods. Our method incorporates auxiliary tasks that generate slot types as inverse prompts for main tasks, creating slot values during joint training. Cycle consistency between these two tasks enables the generation and selection of quality samples in unknown target domains for subsequent fine-tuning. This approach also facilitates automatic label creation, thereby optimizing the training and fine-tuning of DST models. We demonstrate this method's effectiveness on large language models in zero-shot scenarios, improving average joint goal accuracy by $8\%$ across all domains in MultiWOZ.
In the task of Learning from Label Proportions (LLP), a model is trained on groups (a.k.a bags) of instances and their corresponding label proportions to predict labels for individual instances. LLP has been applied pre-dominantly on two types of datasets - image and tabular. In image LLP, bags of fixed size are created by randomly sampling instances from an underlying dataset. Bags created via this methodology are called random bags. Experimentation on Image LLP has been mostly on random bags on CIFAR-* and MNIST datasets. Despite being a very crucial task in privacy sensitive applications, tabular LLP does not yet have a open, large scale LLP benchmark. One of the unique properties of tabular LLP is the ability to create feature bags where all the instances in a bag have the same value for a given feature. It has been shown in prior research that feature bags are very common in practical, real world applications [Chen et. al '23, Saket et. al. '22]. In this paper, we address the lack of a open, large scale tabular benchmark. First we propose LLP-Bench, a suite of 56 LLP datasets (52 feature bag and 4 random bag datasets) created from the Criteo CTR prediction dataset consisting of 45 million instances. The 56 datasets represent diverse ways in which bags can be constructed from underlying tabular data. To the best of our knowledge, LLP-Bench is the first large scale tabular LLP benchmark with an extensive diversity in constituent datasets. Second, we propose four metrics that characterize and quantify the hardness of a LLP dataset. Using these four metrics we present deep analysis of the 56 datasets in LLP-Bench. Finally we present the performance of 9 SOTA and popular tabular LLP techniques on all the 56 datasets. To the best of our knowledge, our study consisting of more than 2500 experiments is the most extensive study of popular tabular LLP techniques in literature.
Large Language Models (LLMs) have shown promise in the autonomous driving sector, particularly in generalization and interpretability. We introduce a unique object-level multimodal LLM architecture that merges vectorized numeric modalities with a pre-trained LLM to improve context understanding in driving situations. We also present a new dataset of 160k QA pairs derived from 10k driving scenarios, paired with high quality control commands collected with RL agent and question answer pairs generated by teacher LLM (GPT-3.5). A distinct pretraining strategy is devised to align numeric vector modalities with static LLM representations using vector captioning language data. We also introduce an evaluation metric for Driving QA and demonstrate our LLM-driver's proficiency in interpreting driving scenarios, answering questions, and decision-making. Our findings highlight the potential of LLM-based driving action generation in comparison to traditional behavioral cloning. We make our benchmark, datasets, and model available for further exploration.
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at //github.com/yuweihao/MM-Vet.
Fine-tuning diffusion models through personalized datasets is an acknowledged method for improving generation quality across downstream tasks, which, however, often inadvertently generates unintended concepts such as watermarks and QR codes, attributed to the limitations in image sources and collecting methods within specific downstream tasks. Existing solutions suffer from eliminating these unintentionally learned implicit concepts, primarily due to the dependency on the model's ability to recognize concepts that it actually cannot discern. In this work, we introduce Geom-Erasing, a novel approach that successfully removes the implicit concepts with either an additional accessible classifier or detector model to encode geometric information of these concepts into text domain. Moreover, we propose Implicit Concept, a novel image-text dataset imbued with three implicit concepts (i.e., watermarks, QR codes, and text) for training and evaluation. Experimental results demonstrate that Geom-Erasing not only identifies but also proficiently eradicates implicit concepts, revealing a significant improvement over the existing methods. The integration of geometric information marks a substantial progression in the precise removal of implicit concepts in diffusion models.
We introduce a neural-preconditioned iterative solver for Poisson equations with mixed boundary conditions. The Poisson equation is ubiquitous in scientific computing: it governs a wide array of physical phenomena, arises as a subproblem in many numerical algorithms, and serves as a model problem for the broader class of elliptic PDEs. The most popular Poisson discretizations yield large sparse linear systems. At high resolution, and for performance-critical applications, iterative solvers can be advantageous for these -- but only when paired with powerful preconditioners. The core of our solver is a neural network trained to approximate the inverse of a discrete structured-grid Laplace operator for a domain of arbitrary shape and with mixed boundary conditions. The structure of this problem motivates a novel network architecture that we demonstrate is highly effective as a preconditioner even for boundary conditions outside the training set. We show that on challenging test cases arising from an incompressible fluid simulation, our method outperforms state-of-the-art solvers like algebraic multigrid as well as some recent neural preconditioners.
Inspired by biological motion generation, central pattern generators (CPGs) is frequently employed in legged robot locomotion control to produce natural gait pattern with low-dimensional control signals. However, the limited adaptability and stability over complex terrains hinder its application. To address this issue, this paper proposes a terrain-adaptive locomotion control method that incorporates deep reinforcement learning (DRL) framework into CPG, where the CPG model is responsible for the generation of synchronized signals, providing basic locomotion gait, while DRL is integrated to enhance the adaptability of robot towards uneven terrains by adjusting the parameters of CPG mapping functions. The experiments conducted on the hexapod robot in Isaac Gym simulation environment demonstrated the superiority of the proposed method in terrain-adaptability, convergence rate and reward design complexity.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.