亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Terrestrial and aerial bimodal vehicles have gained widespread attention due to their cross-domain maneuverability. Nevertheless, their bimodal dynamics significantly increase the complexity of motion planning and control, thus hindering robust and efficient autonomous navigation in unknown environments. To resolve this issue, we develop a model-based planning and control framework for terrestrial aerial bi-modal vehicles. This work begins by deriving a unified dynamic model and the corresponding differential flatness. Leveraging differential flatness, an optimization-based trajectory planner is proposed, which takes into account both solution quality and computational efficiency. Moreover, we design a tracking controller using nonlinear model predictive control based on the proposed unified dynamic model to achieve accurate trajectory tracking and smooth mode transition. We validate our framework through extensive benchmark comparisons and experiments, demonstrating its effectiveness in terms of planning quality and control performance.

相關內容

Integrated sensing and communication (ISAC) system stands out as a pivotal usage scenario of 6G. To explore the coordination gains offered by the ISAC technique, this paper introduces a novel communication-assisted sensing (CAS) system. The CAS system can endow users with beyond-line-of-sight sensing capability, wherein the base station with favorable visibility senses device-free targets, simultaneously transmitting the acquired sensory information to users. Within the CAS framework, we characterize the fundamental limits to reveal the achievable distortion between the state of the targets of interest and their reconstruction at the users' end. Finally, within the confines of this theoretical framework, we employ a typical application as an illustrative example to demonstrate the minimization of distortion through dual-functional waveform design, showcasing the potential of CAS in enhancing sensing capabilities.

For autonomous vehicles to proactively plan safe trajectories and make informed decisions, they must be able to predict the future occupancy states of the local environment. However, common issues with occupancy prediction include predictions where moving objects vanish or become blurred, particularly at longer time horizons. We propose an environment prediction framework that incorporates environment semantics for future occupancy prediction. Our method first semantically segments the environment and uses this information along with the occupancy information to predict the spatiotemporal evolution of the environment. We validate our approach on the real-world Waymo Open Dataset. Compared to baseline methods, our model has higher prediction accuracy and is capable of maintaining moving object appearances in the predictions for longer prediction time horizons.

Surrounding perceptions are quintessential for safe driving for connected and autonomous vehicles (CAVs), where the Bird's Eye View has been employed to accurately capture spatial relationships among vehicles. However, severe inherent limitations of BEV, like blind spots, have been identified. Collaborative perception has emerged as an effective solution to overcoming these limitations through data fusion from multiple views of surrounding vehicles. While most existing collaborative perception strategies adopt a fully connected graph predicated on fairness in transmissions, they often neglect the varying importance of individual vehicles due to channel variations and perception redundancy. To address these challenges, we propose a novel Priority-Aware Collaborative Perception (PACP) framework to employ a BEV-match mechanism to determine the priority levels based on the correlation between nearby CAVs and the ego vehicle for perception. By leveraging submodular optimization, we find near-optimal transmission rates, link connectivity, and compression metrics. Moreover, we deploy a deep learning-based adaptive autoencoder to modulate the image reconstruction quality under dynamic channel conditions. Finally, we conduct extensive studies and demonstrate that our scheme significantly outperforms the state-of-the-art schemes by 8.27% and 13.60%, respectively, in terms of utility and precision of the Intersection over Union.

Long-horizon task and motion planning (TAMP) is notoriously difficult to solve, let alone optimally, due to the tight coupling between the interleaved (discrete) task and (continuous) motion planning phases, where each phase on its own is frequently an NP-hard or even PSPACE-hard computational challenge. In this study, we tackle the even more challenging goal of jointly optimizing task and motion plans for a real dual-arm system in which the two arms operate in close vicinity to solve highly constrained tabletop multi-object rearrangement problems. Toward that, we construct a tightly integrated planning and control optimization pipeline, Makespan-Optimized Dual-Arm Planner (MODAP) that combines novel sampling techniques for task planning with state-of-the-art trajectory optimization techniques. Compared to previous state-of-the-art, MODAP produces task and motion plans that better coordinate a dual-arm system, delivering significantly improved execution time improvements while simultaneously ensuring that the resulting time-parameterized trajectory conforms to specified acceleration and jerk limits.

The evolution of Internet and its related communication technologies have consistently increased the risk of cyber-attacks. In this context, a crucial role is played by Intrusion Detection Systems (IDSs), which are security devices designed to identify and mitigate attacks to modern networks. Data-driven approaches based on Machine Learning (ML) have gained more and more popularity for executing the classification tasks required by signature-based IDSs. However, typical ML models adopted for this purpose do not properly take into account the uncertainty associated with their prediction. This poses significant challenges, as they tend to produce misleadingly high classification scores for both misclassified inputs and inputs belonging to unknown classes (e.g. novel attacks), limiting the trustworthiness of existing ML-based solutions. In this paper, we argue that ML-based IDSs should always provide accurate uncertainty quantification to avoid overconfident predictions. In fact, an uncertainty-aware classification would be beneficial to enhance closed-set classification performance, would make it possible to carry out Active Learning, and would help recognize inputs of unknown classes as truly unknowns, unlocking open-set classification capabilities and Out-of-Distribution (OoD) detection. To verify it, we compare various ML-based methods for uncertainty quantification and for open-set classification, either specifically designed for or tailored to the domain of network intrusion detection. Moreover, we develop a custom model based on Bayesian Neural Networks to ensure reliable uncertainty estimates and improve the OoD detection capabilities, thus showing how proper uncertainty quantification can be exploited to significantly enhance the trustworthiness of ML-based IDSs.

Navigation of wheeled vehicles on uneven terrain necessitates going beyond the 2D approaches for trajectory planning. Specifically, it is essential to incorporate the full 6dof variation of vehicle pose and its associated stability cost in the planning process. To this end, most recent works aim to learn a neural network model to predict the vehicle evolution. However, such approaches are data-intensive and fraught with generalization issues. In this paper, we present a purely model-based approach that just requires the digital elevation information of the terrain. Specifically, we express the wheel-terrain interaction and 6dof pose prediction as a non-linear least squares (NLS) problem. As a result, trajectory planning can be viewed as a bi-level optimization. The inner optimization layer predicts the pose on the terrain along a given trajectory, while the outer layer deforms the trajectory itself to reduce the stability and kinematic costs of the pose. We improve the state-of-the-art in the following respects. First, we show that our NLS based pose prediction closely matches the output from a high-fidelity physics engine. This result coupled with the fact that we can query gradients of the NLS solver, makes our pose predictor, a differentiable wheel-terrain interaction model. We further leverage this differentiability to efficiently solve the proposed bi-level trajectory optimization problem. Finally, we perform extensive experiments, and comparison with a baseline to showcase the effectiveness of our approach in obtaining smooth, stable trajectories.

The beamforming performance of the uniform circular array (UCA) in near-field wideband communication systems is investigated. Compared to uniform linear array (ULA), UCA exhibits uniform effective array aperture in all directions, thus enabling more users to benefit from near-field communications. In this paper, the unique beam squint effect in near-field wideband UCA systems is comprehensively analyzed in both the distance and angular domains. It is rigorously demonstrated that the beam focal point only exists at a specific frequency in wideband UCA systems, resulting in significant beamforming loss. To alleviate this unique beam squint effect, the true-time delay (TTD)-based beamforming architecture is exploited. In particular, two wideband beamforming optimization approaches leveraging TTD units are proposed. 1) Analytical approach: In this approach, the phase shifters (PSs) and the time delay of TTD units are designed based on the analytical formula for beamforming gain. Following this design, the minimum number of TTD units required to achieve a predetermined beamforming gain is quantified. 2) Joint-optimization approach: In this method, the PSs and the TTD units are jointly optimized under practical maximum delay constraints to approximate the optimal unconstrained analog beamformer. Specifically, an efficient alternating optimization algorithm is proposed, where the PSs and the TTD units are alternately updated using either the closed-form solution or the low-complexity linear search approach. Extensive numerical results demonstrate that 1) the proposed beamforming schemes effectively mitigate the beam squint effect, and 2) the joint-optimization approach outperforms the analytical approach in terms of array gain and achievable spectral efficiency.

Complex reasoning problems contain states that vary in the computational cost required to determine a good action plan. Taking advantage of this property, we propose Adaptive Subgoal Search (AdaSubS), a search method that adaptively adjusts the planning horizon. To this end, AdaSubS generates diverse sets of subgoals at different distances. A verification mechanism is employed to filter out unreachable subgoals swiftly, allowing to focus on feasible further subgoals. In this way, AdaSubS benefits from the efficiency of planning with longer subgoals and the fine control with the shorter ones, and thus scales well to difficult planning problems. We show that AdaSubS significantly surpasses hierarchical planning algorithms on three complex reasoning tasks: Sokoban, the Rubik's Cube, and inequality proving benchmark INT.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

北京阿比特科技有限公司