亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses the problem of traversing through unknown, tilted, and narrow gaps for quadrotors using Deep Reinforcement Learning (DRL). Previous learning-based methods relied on accurate knowledge of the environment, including the gap's pose and size. In contrast, we integrate onboard sensing and detect the gap from a single onboard camera. The training problem is challenging for two reasons: a precise and robust whole-body planning and control policy is required for variable-tilted and narrow gaps, and an effective Sim2Real method is needed to successfully conduct real-world experiments. To this end, we propose a learning framework for agile gap traversal flight, which successfully trains the vehicle to traverse through the center of the gap at an approximate attitude to the gap with aggressive tilted angles. The policy trained only in a simulation environment can be transferred into different domains with fine-tuning while maintaining the success rate. Our proposed framework, which integrates onboard sensing and a neural network controller, achieves a success rate of 84.51% in real-world experiments, with gap orientations up to 60deg. To the best of our knowledge, this is the first paper that performs the learning-based variable-tilted narrow gap traversal flight in the real world, without prior knowledge of the environment.

相關內容

This paper proposes a collision avoidance method for ellipsoidal rigid bodies, which utilizes a control barrier function (CBF) designed from a supporting hyperplane. We formulate the problem in the Special Euclidean Group SE(2) and SE(3), where the dynamics are described as rigid body motion (RBM). Then, we consider the condition for separating two ellipsoidal rigid bodies by employing a signed distance from a supporting hyperplane of a rigid body to the other rigid body. Although the positive value of this signed distance implies that two rigid bodies are collision-free, a naively prepared supporting hyperplane yields a smaller value than the actual distance. To avoid such a conservative evaluation, the supporting hyperplane is rotated so that the signed distance from the supporting hyperplane to the other rigid body is maximized. We prove that the maximum value of this optimization problem is equal to the actual distance between two ellipsoidal rigid bodies, hence eliminating excessive conservativeness. We leverage this signed distance as a CBF to prevent collision while the supporting hyperplane is rotated via a gradient-based input. The designed CBF is integrated into a quadratic programming (QP) problem, where each rigid body calculates its collision-free input in a distributed manner, given communication among rigid bodies. The proposed method is demonstrated with simulations. Finally, we exemplify our method can be extended to a vehicle having nonholonomic dynamics.

This paper seeks to solve Multi-Source Domain Adaptation (MSDA), which aims to mitigate data distribution shifts when transferring knowledge from multiple labeled source domains to an unlabeled target domain. We propose a novel MSDA framework based on dictionary learning and optimal transport. We interpret each domain in MSDA as an empirical distribution. As such, we express each domain as a Wasserstein barycenter of dictionary atoms, which are empirical distributions. We propose a novel algorithm, DaDiL, for learning via mini-batches: (i) atom distributions; (ii) a matrix of barycentric coordinates. Based on our dictionary, we propose two novel methods for MSDA: DaDil-R, based on the reconstruction of labeled samples in the target domain, and DaDiL-E, based on the ensembling of classifiers learned on atom distributions. We evaluate our methods in 3 benchmarks: Caltech-Office, Office 31, and CRWU, where we improved previous state-of-the-art by 3.15%, 2.29%, and 7.71% in classification performance. Finally, we show that interpolations in the Wasserstein hull of learned atoms provide data that can generalize to the target domain.

Understanding cluster-wide I/O patterns of large-scale HPC clusters is essential to minimize the occurrence and impact of I/O interference. Yet, most previous work in this area focused on monitoring and predicting task and node-level I/O burst events. This paper analyzes Darshan reports from three supercomputers to extract system-level read and write I/O rates in five minutes intervals. We observe significant (over 100x) fluctuations in read and write I/O rates in all three clusters. We then train machine learning models to estimate the occurrence of system-level I/O bursts 5 - 120 minutes ahead. Evaluation results show that we can predict I/O bursts with more than 90% accuracy (F-1 score) five minutes ahead and more than 87% accuracy two hours ahead. We also show that the ML models attain more than 70% accuracy when estimating the degree of the I/O burst. We believe that high-accuracy predictions of I/O bursts can be used in multiple ways, such as postponing delay-tolerant I/O operations (e.g., checkpointing), pausing nonessential applications (e.g., file system scrubbers), and devising I/O-aware job scheduling methods. To validate this claim, we simulated a burst-aware job scheduler that can postpone the start time of applications to avoid I/O bursts. We show that the burst-aware job scheduling can lead to an up to 5x decrease in application runtime.

This paper introduces a novel state estimation framework for robots using differentiable ensemble Kalman filters (DEnKF). DEnKF is a reformulation of the traditional ensemble Kalman filter that employs stochastic neural networks to model the process noise implicitly. Our work is an extension of previous research on differentiable filters, which has provided a strong foundation for our modular and end-to-end differentiable framework. This framework enables each component of the system to function independently, leading to improved flexibility and versatility in implementation. Through a series of experiments, we demonstrate the flexibility of this model across a diverse set of real-world tracking tasks, including visual odometry and robot manipulation. Moreover, we show that our model effectively handles noisy observations, is robust in the absence of observations, and outperforms state-of-the-art differentiable filters in terms of error metrics. Specifically, we observe a significant improvement of at least 59% in translational error when using DEnKF with noisy observations. Our results underscore the potential of DEnKF in advancing state estimation for robotics. Code for DEnKF is available at //github.com/ir-lab/DEnKF

The aquaculture sector in New Zealand is experiencing rapid expansion, with a particular emphasis on mussel exports. As the demands of mussel farming operations continue to evolve, the integration of artificial intelligence and computer vision techniques, such as intelligent object detection, is emerging as an effective approach to enhance operational efficiency. This study delves into advancing buoy detection by leveraging deep learning methodologies for intelligent mussel farm monitoring and management. The primary objective centers on improving accuracy and robustness in detecting buoys across a spectrum of real-world scenarios. A diverse dataset sourced from mussel farms is captured and labeled for training, encompassing imagery taken from cameras mounted on both floating platforms and traversing vessels, capturing various lighting and weather conditions. To establish an effective deep learning model for buoy detection with a limited number of labeled data, we employ transfer learning techniques. This involves adapting a pre-trained object detection model to create a specialized deep learning buoy detection model. We explore different pre-trained models, including YOLO and its variants, alongside data diversity to investigate their effects on model performance. Our investigation demonstrates a significant enhancement in buoy detection performance through deep learning, accompanied by improved generalization across diverse weather conditions, highlighting the practical effectiveness of our approach.

Graph alignment refers to the task of finding the vertex correspondence between two positively correlated graphs. Extensive study has been done on polynomial-time algorithms for the graph alignment problem under the Erd\H{o}s--R\'enyi graph pair model, where the two graphs are Erd\H{o}s--R\'enyi graphs with edge probability $q_\mathrm{u}$, correlated under certain vertex correspondence. To achieve exact recovery of the vertex correspondence, all existing algorithms at least require the edge correlation coefficient $\rho_\mathrm{u}$ between the two graphs to satisfy $\rho_\mathrm{u} > \sqrt{\alpha}$, where $\alpha \approx 0.338$ is Otter's tree-counting constant. Moreover, it is conjectured in [1] that no polynomial-time algorithm can achieve exact recovery under weak edge correlation $\rho_\mathrm{u}<\sqrt{\alpha}$. In this paper, we show that with a vanishing amount of additional attribute information, exact recovery is polynomial-time feasible under vanishing edge correlation $\rho_\mathrm{u} \ge n^{-\Theta(1)}$. We identify a local tree structure, which incorporates one layer of user information and one layer of attribute information, and apply the subgraph counting technique to such structures. A polynomial-time algorithm is proposed that recovers the vertex correspondence for all but a vanishing fraction of vertices. We then further refine the algorithm output to achieve exact recovery. The motivation for considering additional attribute information comes from the widely available side information in real-world applications, such as the user's birthplace and educational background on LinkedIn and Twitter social networks.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

北京阿比特科技有限公司