亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models have the potential to be valuable in the healthcare industry, but it's crucial to verify their safety and effectiveness through rigorous evaluation. For this purpose, we comprehensively evaluated both open-source LLMs and Google's new multimodal LLM called Gemini across Medical reasoning, hallucination detection, and Medical Visual Question Answering tasks. While Gemini showed competence, it lagged behind state-of-the-art models like MedPaLM 2 and GPT-4 in diagnostic accuracy. Additionally, Gemini achieved an accuracy of 61.45\% on the medical VQA dataset, significantly lower than GPT-4V's score of 88\%. Our analysis revealed that Gemini is highly susceptible to hallucinations, overconfidence, and knowledge gaps, which indicate risks if deployed uncritically. We also performed a detailed analysis by medical subject and test type, providing actionable feedback for developers and clinicians. To mitigate risks, we applied prompting strategies that improved performance. Additionally, we facilitated future research and development by releasing a Python module for medical LLM evaluation and establishing a dedicated leaderboard on Hugging Face for medical domain LLMs. Python module can be found at //github.com/promptslab/RosettaEval

相關內容

2023年12 月 6 日,谷歌 CEO 桑達爾?皮查伊官宣 Gemini 1.0 版正式上線。這次發布的 Gemini 大模型是原生多模態大模型,是谷歌大模型新時代的第一步,它包括三種量級:能力最強的 Gemini Ultra,適用于多任務的 Gemini Pro 以及適用于特定任務和端側的 Gemini Nano。

Recent research has begun to examine the potential of automatically finding and fixing accessibility issues that manifest in software. However, while recent work makes important progress, it has generally been skewed toward identifying issues that affect users with certain disabilities, such as those with visual or hearing impairments. However, there are other groups of users with different types of disabilities that also need software tooling support to improve their experience. As such, this paper aims to automatically identify accessibility issues that affect users with motor-impairments. To move toward this goal, this paper introduces a novel approach, called MotorEase, capable of identifying accessibility issues in mobile app UIs that impact motor-impaired users. Motor-impaired users often have limited ability to interact with touch-based devices, and instead may make use of a switch or other assistive mechanism -- hence UIs must be designed to support both limited touch gestures and the use of assistive devices. MotorEase adapts computer vision and text processing techniques to enable a semantic understanding of app UI screens, enabling the detection of violations related to four popular, previously unexplored UI design guidelines that support motor-impaired users, including: (i) visual touch target size, (ii) expanding sections, (iii) persisting elements, and (iv) adjacent icon visual distance. We evaluate MotorEase on a newly derived benchmark, called MotorCheck, that contains 555 manually annotated examples of violations to the above accessibility guidelines, across 1599 screens collected from 70 applications via a mobile app testing tool. Our experiments illustrate that MotorEase is able to identify violations with an average accuracy of ~90%, and a false positive rate of less than 9%, outperforming baseline techniques.

Detectives frequently engage in information detection and reasoning simultaneously when making decisions across various cases, especially when confronted with a vast amount of information. With the rapid development of large language models~(LLMs), evaluating how these models identify key information and reason to solve questions becomes increasingly relevant. We introduces the DetectBench, a reading comprehension dataset designed to assess a model's ability to jointly ability in key information detection and multi-hop reasoning when facing complex and implicit information. The DetectBench comprises 3,928 questions, each paired with a paragraph averaging 190 tokens in length. To enhance model's detective skills, we propose the Detective Thinking Framework. These methods encourage models to identify all possible clues within the context before reasoning. Our experiments reveal that existing models perform poorly in both information detection and multi-hop reasoning. However, the Detective Thinking Framework approach alleviates this issue.

It has been observed that representations learned by distinct neural networks conceal structural similarities when the models are trained under similar inductive biases. From a geometric perspective, identifying the classes of transformations and the related invariances that connect these representations is fundamental to unlocking applications, such as merging, stitching, and reusing different neural modules. However, estimating task-specific transformations a priori can be challenging and expensive due to several factors (e.g., weights initialization, training hyperparameters, or data modality). To this end, we introduce a versatile method to directly incorporate a set of invariances into the representations, constructing a product space of invariant components on top of the latent representations without requiring prior knowledge about the optimal invariance to infuse. We validate our solution on classification and reconstruction tasks, observing consistent latent similarity and downstream performance improvements in a zero-shot stitching setting. The experimental analysis comprises three modalities (vision, text, and graphs), twelve pretrained foundational models, nine benchmarks, and several architectures trained from scratch.

Neural language models, which reach state-of-the-art results on most natural language processing tasks, are trained on large text corpora that inevitably contain value-burdened content and often capture undesirable biases, which the models reflect. This case study focuses on the political biases of pre-trained encoders in Czech and compares them with a representative value survey. Because Czech is a gendered language, we also measure how the grammatical gender coincides with responses to men and women in the survey. We introduce a novel method for measuring the model's perceived political values. We find that the models do not assign statement probability following value-driven reasoning, and there is no systematic difference between feminine and masculine sentences. We conclude that BERT-sized models do not manifest systematic alignment with political values and that the biases observed in the models are rather due to superficial imitation of training data patterns than systematic value beliefs encoded in the models.

Detecting damage in critical structures using monitored data is a fundamental task of structural health monitoring, which is extremely important for maintaining structures' safety and life-cycle management. Based on statistical pattern recognition paradigm, damage detection can be conducted by assessing changes in the distribution of properly extracted damage-sensitive features (DSFs). This can be naturally formulated as a distributional change-point detection problem. A good change-point detector for damage detection should be scalable to large DSF datasets, applicable to different types of changes, and capable of controlling for false-positive indications. This study proposes a new distributional change-point detection method for damage detection to address these challenges. We embed the elements of a DSF distributional sequence into the Wasserstein space and construct a moving sum (MOSUM) multiple change-point detector based on Fr\'echet statistics and establish theoretical properties. Extensive simulation studies demonstrate the superiority of our proposed approach against other competitors to address the aforementioned practical requirements. We apply our method to the cable-tension measurements monitored from a long-span cable-stayed bridge for cable damage detection. We conduct a comprehensive change-point analysis for the extracted DSF data, and reveal interesting patterns from the detected changes, which provides valuable insights into cable system damage.

As large language models (LLMs) like ChatGPT have gained traction, an increasing number of news websites have begun utilizing them to generate articles. However, not only can these language models produce factually inaccurate articles on reputable websites but disreputable news sites can utilize LLMs to mass produce misinformation. To begin to understand this phenomenon, we present one of the first large-scale studies of the prevalence of synthetic articles within online news media. To do this, we train a DeBERTa-based synthetic news detector and classify over 15.46 million articles from 3,074 misinformation and mainstream news websites. We find that between January 1, 2022, and May 1, 2023, the relative number of synthetic news articles increased by 57.3% on mainstream websites while increasing by 474% on misinformation sites. We find that this increase is largely driven by smaller less popular websites. Analyzing the impact of the release of ChatGPT using an interrupted-time-series, we show that while its release resulted in a marked increase in synthetic articles on small sites as well as misinformation news websites, there was not a corresponding increase on large mainstream news websites.

A community needs assessment is a tool used by non-profits and government agencies to quantify the strengths and issues of a community, allowing them to allocate their resources better. Such approaches are transitioning towards leveraging social media conversations to analyze the needs of communities and the assets already present within them. However, manual analysis of exponentially increasing social media conversations is challenging. There is a gap in the present literature in computationally analyzing how community members discuss the strengths and needs of the community. To address this gap, we introduce the task of identifying, extracting, and categorizing community needs and assets from conversational data using sophisticated natural language processing methods. To facilitate this task, we introduce the first dataset about community needs and assets consisting of 3,511 conversations from Reddit, annotated using crowdsourced workers. Using this dataset, we evaluate an utterance-level classification model compared to sentiment classification and a popular large language model (in a zero-shot setting), where we find that our model outperforms both baselines at an F1 score of 94% compared to 49% and 61% respectively. Furthermore, we observe through our study that conversations about needs have negative sentiments and emotions, while conversations about assets focus on location and entities. The dataset is available at //github.com/towhidabsar/CommunityNeeds.

AI foundation models have the capability to produce a wide array of responses to a single prompt, a feature that is highly beneficial in software engineering to generate diverse code solutions. However, this advantage introduces a significant trade-off between diversity and correctness. In software engineering tasks, diversity is key to exploring design spaces and fostering creativity, but the practical value of these solutions is heavily dependent on their correctness. Our study systematically investigates this trade-off using experiments with HumanEval tasks, exploring various parameter settings and prompting strategies. We assess the diversity of code solutions using similarity metrics from the code clone community. The study identifies combinations of parameters and strategies that strike an optimal balance between diversity and correctness, situated on the Pareto front of this trade-off space. These findings offer valuable insights for software engineers on how to effectively use AI foundation models to generate code solutions that are diverse and accurate.

Large language models (LLMs) have strong capabilities in solving diverse natural language processing tasks. However, the safety and security issues of LLM systems have become the major obstacle to their widespread application. Many studies have extensively investigated risks in LLM systems and developed the corresponding mitigation strategies. Leading-edge enterprises such as OpenAI, Google, Meta, and Anthropic have also made lots of efforts on responsible LLMs. Therefore, there is a growing need to organize the existing studies and establish comprehensive taxonomies for the community. In this paper, we delve into four essential modules of an LLM system, including an input module for receiving prompts, a language model trained on extensive corpora, a toolchain module for development and deployment, and an output module for exporting LLM-generated content. Based on this, we propose a comprehensive taxonomy, which systematically analyzes potential risks associated with each module of an LLM system and discusses the corresponding mitigation strategies. Furthermore, we review prevalent benchmarks, aiming to facilitate the risk assessment of LLM systems. We hope that this paper can help LLM participants embrace a systematic perspective to build their responsible LLM systems.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

北京阿比特科技有限公司