亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the method of mappings for performing shape optimization for unsteady fluid-structure interaction (FSI) problems. In this work, we focus on the numerical implementation. We model the optimization problem such that it takes several theoretical results into account, such as regularity requirements on the transformations and a differential geometrical point of view on the manifold of shapes. Moreover, we discretize the problem such that we can compute exact discrete gradients. This allows for the use of general purpose optimization solvers. We focus on an FSI benchmark problem to validate our numerical implementation. The method is used to optimize parts of the outer boundary and the interface. The numerical simulations build on FEniCS, dolfin-adjoint and IPOPT. Moreover, as an additional theoretical result, we show that for a linear special case the adjoint attains the same structure as the forward problem but reverses the temporal flow of information.

相關內容

We propose a metaheuristic algorithm enhanced with feature-based guidance that is designed to solve the Capacitated Vehicle Routing Problem (CVRP). To formulate the proposed guidance, we developed and explained a supervised Machine Learning (ML) model, that is used to formulate the guidance and control the diversity of the solution during the optimization process. We propose a metaheuristic algorithm combining neighborhood search and a novel mechanism of hybrid split and path relinking to implement the proposed guidance. The proposed guidance has proven to give a statistically significant improvement to the proposed metaheuristic algorithm when solving CVRP. Moreover, the proposed guided metaheuristic is also capable of producing competitive solutions among state-of-the-art metaheuristic algorithms.

Floorplanning for systems-on-a-chip (SoCs) and its sub-systems is a crucial and non-trivial step of the physical design flow. It represents a difficult combinatorial optimization problem. A typical large scale SoC with 120 partitions generates a search-space of nearly 10E250. As novel machine learning (ML) approaches emerge to tackle such problems, there is a growing need for a modern benchmark that comprises a large training dataset and performance metrics that better reflect real-world constraints and objectives compared to existing benchmarks. To address this need, we present FloorSet -- two comprehensive datasets of synthetic fixed-outline floorplan layouts that reflect the distribution of real SoCs. Each dataset has 1M training samples and 100 test samples where each sample is a synthetic floor-plan. FloorSet-Prime comprises fully-abutted rectilinear partitions and near-optimal wire-length. A simplified dataset that reflects early design phases, FloorSet-Lite comprises rectangular partitions, with under 5 percent white-space and near-optimal wire-length. Both datasets define hard constraints seen in modern design flows such as shape constraints, edge-affinity, grouping constraints, and pre-placement constraints. FloorSet is intended to spur fundamental research on large-scale constrained optimization problems. Crucially, FloorSet alleviates the core issue of reproducibility in modern ML driven solutions to such problems. FloorSet is available as an open-source repository for the research community.

In observational studies, unmeasured confounders present a crucial challenge in accurately estimating desired causal effects. To calculate the hazard ratio (HR) in Cox proportional hazard models for time-to-event outcomes, two-stage residual inclusion and limited information maximum likelihood are typically employed. However, these methods are known to entail difficulty in terms of potential bias of HR estimates and parameter identification. This study introduces a novel nonparametric Bayesian method designed to estimate an unbiased HR, addressing concerns that previous research methods have had. Our proposed method consists of two phases: 1) detecting clusters based on the likelihood of the exposure and outcome variables, and 2) estimating the hazard ratio within each cluster. Although it is implicitly assumed that unmeasured confounders affect outcomes through cluster effects, our algorithm is well-suited for such data structures. The proposed Bayesian estimator has good performance compared with some competitors.

We present an Alternating Direction Method of Multipliers (ADMM) algorithm designed to solve the Weighted Generalized Fused LASSO Signal Approximator (wFLSA). First, we show that wFLSAs can always be reformulated as a Generalized LASSO problem. With the availability of algorithms tailored to the Generalized LASSO, the issue appears to be, in principle, resolved. However, the computational complexity of these algorithms is high, with a time complexity of $O(p^4)$ for a single iteration, where $p$ represents the number of coefficients. To overcome this limitation, we propose an ADMM algorithm specifically tailored for wFLSA-equivalent problems, significantly reducing the complexity to $O(p^2)$. Our algorithm is publicly accessible through the R package wflsa.

Learning efficient representations of local features is a key challenge in feature volume-based 3D neural mapping, especially in large-scale environments. In this paper, we introduce Decomposition-based Neural Mapping (DNMap), a storage-efficient large-scale 3D mapping method that employs a discrete representation based on a decomposition strategy. This decomposition strategy aims to efficiently capture repetitive and representative patterns of shapes by decomposing each discrete embedding into component vectors that are shared across the embedding space. Our DNMap optimizes a set of component vectors, rather than entire discrete embeddings, and learns composition rather than indexing the discrete embeddings. Furthermore, to complement the mapping quality, we additionally learn low-resolution continuous embeddings that require tiny storage space. By combining these representations with a shallow neural network and an efficient octree-based feature volume, our DNMap successfully approximates signed distance functions and compresses the feature volume while preserving mapping quality. Our source code is available at //github.com/minseong-p/dnmap.

Score-based generative models have emerged as a powerful approach for sampling high-dimensional probability distributions. Despite their effectiveness, their theoretical underpinnings remain relatively underdeveloped. In this work, we study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives. Assuming access to $L^2$-accurate estimates of the score function, we prove the total variation between the target and the generated data distributions can be bounded above by $\mathcal{O}(d^{3/4}\delta^{1/2})$ in the continuous time level, where $d$ denotes the data dimension and $\delta$ represents the $L^2$-score matching error. For practical implementations using a $p$-th order Runge-Kutta integrator with step size $h$, we establish error bounds of $\mathcal{O}(d^{3/4}\delta^{1/2} + d\cdot(dh)^p)$ at the discrete level. Finally, we present numerical studies on problems up to 128 dimensions to verify our theory.

Graphs are crucial for representing interrelated data and aiding predictive modeling by capturing complex relationships. Achieving high-quality graph representation is important for identifying linked patterns, leading to improvements in Graph Neural Networks (GNNs) to better capture data structures. However, challenges such as data scarcity, high collection costs, and ethical concerns limit progress. As a result, generative models and data augmentation have become more and more popular. This study explores using generated graphs for data augmentation, comparing the performance of combining generated graphs with real graphs, and examining the effect of different quantities of generated graphs on graph classification tasks. The experiments show that balancing scalability and quality requires different generators based on graph size. Our results introduce a new approach to graph data augmentation, ensuring consistent labels and enhancing classification performance.

A novel evaluation study of the most appropriate round function for nearest-neighbor (NN) image interpolation is presented. Evaluated rounding functions are selected among the five rounding rules defined by the Institute of Electrical and Electronics Engineers (IEEE) 754-2008 standard. Both full- and no-reference image quality assessment (IQA) metrics are used to study and evaluate the influence of rounding functions on NN interpolation image quality. The concept of achieved occurrences over targeted occurrences is used to determine the percentage of achieved occurrences based on the number of test images used. Inferential statistical analysis is applied to deduce from a small number of images and draw a conclusion of the behavior of each rounding function on a bigger number of images. Under the normal distribution and at the level of confidence equals to 95%, the maximum and minimum achievable occurrences by each evaluated rounding function are both provided based on the inferential analysis-based experiments.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

北京阿比特科技有限公司