亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Iterative learning control (ILC) is a powerful technique for high performance tracking in the presence of modeling errors for optimal control applications. There is extensive prior work showing its empirical effectiveness in applications such as chemical reactors, industrial robots and quadcopters. However, there is little prior theoretical work that explains the effectiveness of ILC even in the presence of large modeling errors, where optimal control methods using the misspecified model (MM) often perform poorly. Our work presents such a theoretical study of the performance of both ILC and MM on Linear Quadratic Regulator (LQR) problems with unknown transition dynamics. We show that the suboptimality gap, as measured with respect to the optimal LQR controller, for ILC is lower than that for MM by higher order terms that become significant in the regime of high modeling errors. A key part of our analysis is the perturbation bounds for the discrete Ricatti equation in the finite horizon setting, where the solution is not a fixed point and requires tracking the error using recursive bounds. We back our theoretical findings with empirical experiments on a toy linear dynamical system with an approximate model, a nonlinear inverted pendulum system with misspecified mass, and a nonlinear planar quadrotor system in the presence of wind. Experiments show that ILC outperforms MM significantly, in terms of the cost of computed trajectories, when modeling errors are high.

相關內容

This paper considers the problem of real-time control and learning in dynamic systems subjected to parametric uncertainties and proposes a controller that combines Adaptive Control (AC) in the inner loop and a Reinforcement Learning (RL) based policy in the outer loop. Two classes of nonlinear dynamic systems are considered, both of which are control-affine. The first class of dynamic systems utilizes equilibrium points with expansion forms around these points and employs a Lyapunov approach. The second class of nonlinear systems uses contraction theory as the underlying framework. For both classes of systems, the AC-RL controller is shown to lead to online policies that guarantee stability, and leverage accelerated convergence properties using a high-order tuner. Additionally, for the second class of systems, the AC-RL controller is shown to lead to parameter learning with persistent excitation. Numerical validations of all algorithms are carried out using a quadrotor landing task on a moving platform and other academic examples. All results clearly point out the advantage of the proposed integrative AC-RL approach.

Safety is a critical component of autonomous systems and remains a challenge for learning-based policies to be utilized in the real world. In particular, policies learned using reinforcement learning often fail to generalize to novel environments due to unsafe behavior. In this paper, we propose Sim-to-Lab-to-Real to safely close the reality gap. To improve safety, we apply a dual policy setup where a performance policy is trained using the cumulative task reward and a backup (safety) policy is trained by solving the reach-avoid Bellman Equation based on Hamilton-Jacobi reachability analysis. In Sim-to-Lab transfer, we apply a supervisory control scheme to shield unsafe actions during exploration; in Lab-to-Real transfer, we leverage the Probably Approximately Correct (PAC)-Bayes framework to provide lower bounds on the expected performance and safety of policies in unseen environments. We empirically study the proposed framework for ego-vision navigation in two types of indoor environments including a photo-realistic one. We also demonstrate strong generalization performance through hardware experiments in real indoor spaces with a quadrupedal robot. See //sites.google.com/princeton.edu/sim-to-lab-to-real for supplementary material.

Value-based reinforcement-learning algorithms have shown strong performances in games, robotics, and other real-world applications. The most popular sample-based method is $Q$-Learning. A $Q$-value is the expected return for a state-action pair when following a particular policy, and the algorithm subsequently performs updates by adjusting the current $Q$-value towards the observed reward and the maximum of the $Q$-values of the next state. The procedure introduces maximization bias, and solutions like Double $Q$-Learning have been considered. We frame the bias problem statistically and consider it an instance of estimating the maximum expected value (MEV) of a set of random variables. We propose the $T$-Estimator (TE) based on two-sample testing for the mean. The TE flexibly interpolates between over- and underestimation by adjusting the level of significance of the underlying hypothesis tests. A generalization termed $K$-Estimator (KE) obeys the same bias and variance bounds as the TE while relying on a nearly arbitrary kernel function. Using the TE and the KE, we introduce modifications of $Q$-Learning and its neural network analog, the Deep $Q$-Network. The proposed estimators and algorithms are thoroughly tested and validated on a diverse set of tasks and environments, illustrating the performance potential of the TE and KE.

We present a framework to address a class of sequential decision making problems. Our framework features learning the optimal control policy with robustness to noisy data, determining the unknown state and action parameters, and performing sensitivity analysis with respect to problem parameters. We consider two broad categories of sequential decision making problems modelled as infinite horizon Markov Decision Processes (MDPs) with (and without) an absorbing state. The central idea underlying our framework is to quantify exploration in terms of the Shannon Entropy of the trajectories under the MDP and determine the stochastic policy that maximizes it while guaranteeing a low value of the expected cost along a trajectory. This resulting policy enhances the quality of exploration early on in the learning process, and consequently allows faster convergence rates and robust solutions even in the presence of noisy data as demonstrated in our comparisons to popular algorithms such as Q-learning, Double Q-learning and entropy regularized Soft Q-learning. The framework extends to the class of parameterized MDP and RL problems, where states and actions are parameter dependent, and the objective is to determine the optimal parameters along with the corresponding optimal policy. Here, the associated cost function can possibly be non-convex with multiple poor local minima. Simulation results applied to a 5G small cell network problem demonstrate successful determination of communication routes and the small cell locations. We also obtain sensitivity measures to problem parameters and robustness to noisy environment data.

We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical interpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.

We consider the question: how can you sample good negative examples for contrastive learning? We argue that, as with metric learning, learning contrastive representations benefits from hard negative samples (i.e., points that are difficult to distinguish from an anchor point). The key challenge toward using hard negatives is that contrastive methods must remain unsupervised, making it infeasible to adopt existing negative sampling strategies that use label information. In response, we develop a new class of unsupervised methods for selecting hard negative samples where the user can control the amount of hardness. A limiting case of this sampling results in a representation that tightly clusters each class, and pushes different classes as far apart as possible. The proposed method improves downstream performance across multiple modalities, requires only few additional lines of code to implement, and introduces no computational overhead.

Real-world applications often combine learning and optimization problems on graphs. For instance, our objective may be to cluster the graph in order to detect meaningful communities (or solve other common graph optimization problems such as facility location, maxcut, and so on). However, graphs or related attributes are often only partially observed, introducing learning problems such as link prediction which must be solved prior to optimization. We propose an approach to integrate a differentiable proxy for common graph optimization problems into training of machine learning models for tasks such as link prediction. This allows the model to focus specifically on the downstream task that its predictions will be used for. Experimental results show that our end-to-end system obtains better performance on example optimization tasks than can be obtained by combining state of the art link prediction methods with expert-designed graph optimization algorithms.

Deep reinforcement learning suggests the promise of fully automated learning of robotic control policies that directly map sensory inputs to low-level actions. However, applying deep reinforcement learning methods on real-world robots is exceptionally difficult, due both to the sample complexity and, just as importantly, the sensitivity of such methods to hyperparameters. While hyperparameter tuning can be performed in parallel in simulated domains, it is usually impractical to tune hyperparameters directly on real-world robotic platforms, especially legged platforms like quadrupedal robots that can be damaged through extensive trial-and-error learning. In this paper, we develop a stable variant of the soft actor-critic deep reinforcement learning algorithm that requires minimal hyperparameter tuning, while also requiring only a modest number of trials to learn multilayer neural network policies. This algorithm is based on the framework of maximum entropy reinforcement learning, and automatically trades off exploration against exploitation by dynamically and automatically tuning a temperature parameter that determines the stochasticity of the policy. We show that this method achieves state-of-the-art performance on four standard benchmark environments. We then demonstrate that it can be used to learn quadrupedal locomotion gaits on a real-world Minitaur robot, learning to walk from scratch directly in the real world in two hours of training.

There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.

Recent studies have shown the vulnerability of reinforcement learning (RL) models in noisy settings. The sources of noises differ across scenarios. For instance, in practice, the observed reward channel is often subject to noise (e.g., when observed rewards are collected through sensors), and thus observed rewards may not be credible as a result. Also, in applications such as robotics, a deep reinforcement learning (DRL) algorithm can be manipulated to produce arbitrary errors. In this paper, we consider noisy RL problems where observed rewards by RL agents are generated with a reward confusion matrix. We call such observed rewards as perturbed rewards. We develop an unbiased reward estimator aided robust RL framework that enables RL agents to learn in noisy environments while observing only perturbed rewards. Our framework draws upon approaches for supervised learning with noisy data. The core ideas of our solution include estimating a reward confusion matrix and defining a set of unbiased surrogate rewards. We prove the convergence and sample complexity of our approach. Extensive experiments on different DRL platforms show that policies based on our estimated surrogate reward can achieve higher expected rewards, and converge faster than existing baselines. For instance, the state-of-the-art PPO algorithm is able to obtain 67.5% and 46.7% improvements in average on five Atari games, when the error rates are 10% and 30% respectively.

北京阿比特科技有限公司