In this paper, we propose a cell-free scheme for unmanned aerial vehicle (UAV) base stations (BSs) to manage the severe intercell interference between terrestrial users and UAV-BSs of neighboring cells. Since the cell-free scheme requires enormous bandwidth for backhauling, we propose to use the sub-terahertz (sub-THz) band for the backhaul links between UAV-BSs and central processing unit (CPU). Also, because the sub-THz band requires a reliable line-of-sight link, we propose to use a high altitude platform station (HAPS) as a CPU. At the first time-slot of the proposed scheme, users send their messages to UAVs at the sub-6 GHz band. The UAVs then apply match-filtering and power allocation. At the second time-slot, at each UAV, orthogonal resource blocks are allocated for each user at the sub-THz band, and the signals are sent to the HAPS after analog beamforming. In the HAPS receiver, after analog beamforming, the message of each user is decoded. We formulate an optimization problem that maximizes the minimum signal-to-interference-plus-noise ratio of users by finding the optimum allocated power as well as the optimum locations of UAVs. Simulation results demonstrate the superiority of the proposed scheme compared with aerial cellular and terrestrial cell-free baseline schemes.
Interactive machine learning (IML) is a field of research that explores how to leverage both human and computational abilities in decision making systems. IML represents a collaboration between multiple complementary human and machine intelligent systems working as a team, each with their own unique abilities and limitations. This teamwork might mean that both systems take actions at the same time, or in sequence. Two major open research questions in the field of IML are: "How should we design systems that can learn to make better decisions over time with human interaction?" and "How should we evaluate the design and deployment of such systems?" A lack of appropriate consideration for the humans involved can lead to problematic system behaviour, and issues of fairness, accountability, and transparency. Thus, our goal with this work is to present a human-centred guide to designing and evaluating IML systems while mitigating risks. This guide is intended to be used by machine learning practitioners who are responsible for the health, safety, and well-being of interacting humans. An obligation of responsibility for public interaction means acting with integrity, honesty, fairness, and abiding by applicable legal statutes. With these values and principles in mind, we as a machine learning research community can better achieve goals of augmenting human skills and abilities. This practical guide therefore aims to support many of the responsible decisions necessary throughout the iterative design, development, and dissemination of IML systems.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
A central aspect of robotic motion planning is collision avoidance, where a multitude of different approaches are currently in use. Optimization-based motion planning is one method, that often heavily relies on distance computations between robots and obstacles. These computations can easily become a bottleneck, as they do not scale well with the complexity of the robots or the environment. To improve performance, many different methods suggested to use collision primitives, i.e. simple shapes that approximate the more complex rigid bodies, and that are simpler to compute distances to and from. However, each pair of primitives requires its own specialized code, and certain pairs are known to suffer from numerical issues. In this paper, we propose an easy-to-use, unified treatment of a wide variety of primitives. We formulate distance computation as a minimization problem, which we solve iteratively. We show how to take derivatives of this minimization problem, allowing it to be seamlessly integrated into a trajectory optimization method. Our experiments show that our method performs favourably, both in terms of timing and the quality of the trajectory. The source code of our implementation will be released upon acceptance.
Recent advances in natural language processing (NLP) have led to strong text classification models for many tasks. However, still often thousands of examples are needed to train models with good quality. This makes it challenging to quickly develop and deploy new models for real world problems and business needs. Few-shot learning and active learning are two lines of research, aimed at tackling this problem. In this work, we combine both lines into FASL, a platform that allows training text classification models using an iterative and fast process. We investigate which active learning methods work best in our few-shot setup. Additionally, we develop a model to predict when to stop annotating. This is relevant as in a few-shot setup we do not have access to a large validation set.
Ethereum Improvement Proposal (EIP) 1559 was recently implemented to transform Ethereum's transaction fee market. EIP-1559 utilizes an algorithmic update rule with a constant learning rate to estimate a base fee. The base fee reflects prevailing network conditions and hence provides a more reliable oracle for current gas prices. Using on-chain data from the period after its launch, we evaluate the impact of EIP-1559 on the user experience and market performance. Our empirical findings suggest that although EIP-1559 achieves its goals on average, short-term behavior is marked by intense, chaotic oscillations in block sizes (as predicted by our recent theoretical dynamical system analysis [1]) and slow adjustments during periods of demand bursts (e.g., NFT drops). Both phenomena lead to unwanted inter-block variability in mining rewards. To address this issue, we propose an alternative base fee adjustment rule in which the learning rate varies according to an additive increase, multiplicative decrease (AIMD) update scheme. Our simulations show that the latter robustly outperforms the EIP-1559 protocol under various demand scenarios. These results provide evidence that variable learning rate mechanisms may constitute a promising alternative to the default EIP-1559-based format and contribute to the ongoing discussion on the design of more efficient transaction fee markets.
This paper studies the application of reconfigurable intelligent surface (RIS) to cooperative non-orthogonal multiple access (C-NOMA) networks with simultaneous wireless information and power transfer (SWIPT). We aim for maximizing the rate of the strong user with guaranteed weak user's quality of service (QoS) by jointly optimizing power splitting factors, beamforming coefficients, and RIS reflection coefficients in two transmission phases. The formulated problem is difficult to solve due to its complex and non-convex constraints. To tackle this challenging problem, we first use alternating optimization (AO) framework to transform it into three subproblems, and then use the penalty-based arithmetic-geometric mean approximation (PBAGM) algorithm and the successive convex approximation (SCA)-based method to solve them. Numerical results verify the superiority of the proposed algorithm over the baseline schemes.
Model predictive control (MPC) has been used widely in power electronics due to its simple concept, fast dynamic response, and good reference tracking. However, it suffers from parametric uncertainties, since it directly relies on the mathematical model of the system to predict the optimal switching states to be used at the next sampling time. As a result, uncertain parameters lead to an ill-designed MPC. Thus, this paper offers a model-free control strategy on the basis of artificial neural networks (ANNs), for mitigating the effects of parameter mismatching while having a little negative impact on the inverter's performance. This method includes two related stages. First, MPC is used as an expert to control the studied converter in order to provide a dataset, while, in the second stage, the obtained dataset is utilized to train the proposed ANN. The case study herein is based on a four-level three-cell flying capacitor inverter. In this study, MATLAB/Simulink is used to simulate the performance of the proposed method, taking into account various operating conditions. Afterward, the simulation results are reported in comparison with the conventional MPC scheme, demonstrating the superior performance of the proposed control strategy in terms of robustness against parameters mismatch and low total harmonic distortion (THD), especially when changes occur in the system parameters, compared to the conventional MPC. Furthermore, the experimental validation of the proposed method is provided based on the Hardware-in-the-Loop (HIL) simulation using the C2000TM-microcontrollerLaunchPadXL TMS320F28379D kit, demonstrating the applicability of the ANN-based control strategy to be implemented on a DSP controller.
Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a {\em dynamic setting}, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [HWC17]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of $(1+\epsilon)r^2$ and an update time of $O(\text{poly} (r, \log n))$, where $r$ denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (near-optimal) approximation ratio of $(1+\epsilon)$ that is independent of $r$, and a similar update time of $O(\text{poly} (r, \log n))$. It is the first $(1+\epsilon)$-approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on large-scale, real-world data-sets. Our algorithm significantly outperforms the state of the art [HWC17] both in terms of accuracy and efficiency.
Decomposition-based evolutionary algorithms have become fairly popular for many-objective optimization in recent years. However, the existing decomposition methods still are quite sensitive to the various shapes of frontiers of many-objective optimization problems (MaOPs). On the one hand, the cone decomposition methods such as the penalty-based boundary intersection (PBI) are incapable of acquiring uniform frontiers for MaOPs with very convex frontiers. On the other hand, the parallel reference lines of the parallel decomposition methods including the normal boundary intersection (NBI) might result in poor diversity because of under-sampling near the boundaries for MaOPs with concave frontiers. In this paper, a collaborative decomposition method is first proposed to integrate the advantages of parallel decomposition and cone decomposition to overcome their respective disadvantages. This method inherits the NBI-style Tchebycheff function as a convergence measure to heighten the convergence and uniformity of distribution of the PBI method. Moreover, this method also adaptively tunes the extent of rotating an NBI reference line towards a PBI reference line for every subproblem to enhance the diversity of distribution of the NBI method. Furthermore, a collaborative decomposition-based evolutionary algorithm (CoDEA) is presented for many-objective optimization. A collaborative decomposition-based environmental selection mechanism is primarily designed in CoDEA to rank all the individuals associated with the same PBI reference line in the boundary layer and pick out the best ranks. CoDEA is compared with several popular algorithms on 85 benchmark test instances. The experimental results show that CoDEA achieves high competitiveness benefiting from the collaborative decomposition maintaining a good balance among the convergence, uniformity, and diversity of distribution.
We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.