亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Software-Defined Network (SDN) is a new arising terminology of network architecture with outstanding features of orchestration by decoupling the control plane and the data plane in each network element. Even though it brings several benefits, SDN is vulnerable to a diversity of attacks. Abusing the single point of failure in the SDN controller component, hackers can shut down all network operations. More specifics, a malicious OpenFlow application can access to SDN controller to carry out harmful actions without any limitation owing to the lack of the access control mechanism as a standard in the Northbound. The sensitive information about the whole network such as network topology, flow information, and statistics can be gathered and leaked out. Even worse, the entire network can be taken over by the compromised controller. Hence, it is vital to build a scheme of access control for SDN's Northbound. Furthermore, it must also protect the data integrity and availability during data exchange between application and controller. To address such limitations, we introduce B-DAC, a blockchain-based framework for decentralized authentication and fine-grained access control for the Northbound interface to assist administrators in managing and protecting critical resources. With strict policy enforcement, B-DAC can perform decentralized access control for each request to keep network applications under surveillance for preventing over-privileged activities or security policy conflicts. To demonstrate the feasibility of our approach, we also implement a prototype of this framework to evaluate the security impact, effectiveness, and performance through typical use cases.

相關內容

Multiagent reinforcement learning algorithms have not been widely adopted in large scale environments with many agents as they often scale poorly with the number of agents. Using mean field theory to aggregate agents has been proposed as a solution to this problem. However, almost all previous methods in this area make a strong assumption of a centralized system where all the agents in the environment learn the same policy and are effectively indistinguishable from each other. In this paper, we relax this assumption about indistinguishable agents and propose a new mean field system known as Decentralized Mean Field Games, where each agent can be quite different from others. All agents learn independent policies in a decentralized fashion, based on their local observations. We define a theoretical solution concept for this system and provide a fixed point guarantee for a Q-learning based algorithm in this system. A practical consequence of our approach is that we can address a `chicken-and-egg' problem in empirical mean field reinforcement learning algorithms. Further, we provide Q-learning and actor-critic algorithms that use the decentralized mean field learning approach and give stronger performances compared to common baselines in this area. In our setting, agents do not need to be clones of each other and learn in a fully decentralized fashion. Hence, for the first time, we show the application of mean field learning methods in fully competitive environments, large-scale continuous action space environments, and other environments with heterogeneous agents. Importantly, we also apply the mean field method in a ride-sharing problem using a real-world dataset. We propose a decentralized solution to this problem, which is more practical than existing centralized training methods.

Outsourced computation for neural networks allows users access to state of the art models without needing to invest in specialized hardware and know-how. The problem is that the users lose control over potentially privacy sensitive data. With homomorphic encryption (HE) computation can be performed on encrypted data without revealing its content. In this systematization of knowledge, we take an in-depth look at approaches that combine neural networks with HE for privacy preservation. We categorize the changes to neural network models and architectures to make them computable over HE and how these changes impact performance. We find numerous challenges to HE based privacy-preserving deep learning such as computational overhead, usability, and limitations posed by the encryption schemes.

This paper proposes a novel modelling approach for a heavy-duty manipulator with parallel$-$serial structures connected in series. Each considered parallel$-$serial structure contains a revolute segment with rigid links connected by a passive revolute joint and actuated by a linear hydraulic actuator, thus forming a closed kinematic loop. In addition, prismatic segments, consisting of prismatic joints driven by hydraulic linear actuators, also are considered. Expressions for actuator forces are derived using the Newton$-$Euler (N$-$E) dynamics formulation. The derivation process does not assume massless actuators decoupled from manipulator links, which is common in the Lagrange dynamics formulation. Actuator pressure dynamics are included in the analysis, leading in total to a third-order system of ordinary differential equations (ODEs). The proposed model in the N$-$E framework, with fewer parameters than its predecessors, inspires revision of the virtual decomposition control (VDC) systematic process to formulate a control law based on the new model. The virtual stability of each generic manipulator revolute and prismatic segment is obtained, leading to the Lyapunov stability of the entire robot.

This paper deals with the design of the secure network of the Advanced Smart Drone Swarm security network by using the Strategic Alliance for Blockchain Governance Game (SABGG). The SABGG is the system model of the stochastic game to find best strategies towards preparation for preventing a network malfunction by an attacker and the newly proposed adapts this innovative game model into the artificial drone swarm security. Analytically tractable solutions enable to estimate the moment of safety modes and to deliver the optimal accountability of ally drones for preventing attacks. This research helps for whom considers the advanced secure drone swarm architecture with the SABGG within a decentralized network.

Real-world applications in healthcare and supply chain domains produce, exchange, and share data in a multi-stakeholder environment. Data owners want to control their data and privacy in such settings. On the other hand, data consumers demand methods to understand when, how, and who produced the data. These requirements necessitate data governance frameworks that guarantee data provenance, privacy protection, and consent management. We introduce a decentralized data governance framework based on blockchain technology and proxy re-encryption to let data owners control and track their data through privacy-enhancing and consent management mechanisms. Besides, our framework allows the data consumers to understand data lineage through a blockchain-based provenance mechanism. We have used Digital e-prescription as the use case since it has multiple stakeholders and sensitive data while enabling the medical fraternity to manage patients' prescription data, involving patients as data owners, doctors and pharmacists as data consumers. Our proof-of-concept implementation and evaluation results based on CosmWasm, Ethereum, and pyUmbral PRE show that the proposed decentralized system guarantees transparency, privacy, and trust with minimal overhead.

Due to the scarcity in the wireless spectrum and limited energy resources especially in mobile applications, efficient resource allocation strategies are critical in wireless networks. Motivated by the recent advances in deep reinforcement learning (DRL), we address multi-agent DRL-based joint dynamic channel access and power control in a wireless interference network. We first propose a multi-agent DRL algorithm with centralized training (DRL-CT) to tackle the joint resource allocation problem. In this case, the training is performed at the central unit (CU) and after training, the users make autonomous decisions on their transmission strategies with only local information. We demonstrate that with limited information exchange and faster convergence, DRL-CT algorithm can achieve 90% of the performance achieved by the combination of weighted minimum mean square error (WMMSE) algorithm for power control and exhaustive search for dynamic channel access. In the second part of this paper, we consider distributed multi-agent DRL scenario in which each user conducts its own training and makes its decisions individually, acting as a DRL agent. Finally, as a compromise between centralized and fully distributed scenarios, we consider federated DRL (FDRL) to approach the performance of DRL-CT with the use of a central unit in training while limiting the information exchange and preserving privacy of the users in the wireless system. Via simulation results, we show that proposed learning frameworks lead to efficient adaptive channel access and power control policies in dynamic environments.

Graph neural network (GNN) is widely used for recommendation to model high-order interactions between users and items. Existing GNN-based recommendation methods rely on centralized storage of user-item graphs and centralized model learning. However, user data is privacy-sensitive, and the centralized storage of user-item graphs may arouse privacy concerns and risk. In this paper, we propose a federated framework for privacy-preserving GNN-based recommendation, which can collectively train GNN models from decentralized user data and meanwhile exploit high-order user-item interaction information with privacy well protected. In our method, we locally train GNN model in each user client based on the user-item graph inferred from the local user-item interaction data. Each client uploads the local gradients of GNN to a server for aggregation, which are further sent to user clients for updating local GNN models. Since local gradients may contain private information, we apply local differential privacy techniques to the local gradients to protect user privacy. In addition, in order to protect the items that users have interactions with, we propose to incorporate randomly sampled items as pseudo interacted items for anonymity. To incorporate high-order user-item interactions, we propose a user-item graph expansion method that can find neighboring users with co-interacted items and exchange their embeddings for expanding the local user-item graphs in a privacy-preserving way. Extensive experiments on six benchmark datasets validate that our approach can achieve competitive results with existing centralized GNN-based recommendation methods and meanwhile effectively protect user privacy.

In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Detection of malicious behavior is a fundamental problem in security. One of the major challenges in using detection systems in practice is in dealing with an overwhelming number of alerts that are triggered by normal behavior (the so-called false positives), obscuring alerts resulting from actual malicious activity. While numerous methods for reducing the scope of this issue have been proposed, ultimately one must still decide how to prioritize which alerts to investigate, and most existing prioritization methods are heuristic, for example, based on suspiciousness or priority scores. We introduce a novel approach for computing a policy for prioritizing alerts using adversarial reinforcement learning. Our approach assumes that the attackers know the full state of the detection system and dynamically choose an optimal attack as a function of this state, as well as of the alert prioritization policy. The first step of our approach is to capture the interaction between the defender and attacker in a game theoretic model. To tackle the computational complexity of solving this game to obtain a dynamic stochastic alert prioritization policy, we propose an adversarial reinforcement learning framework. In this framework, we use neural reinforcement learning to compute best response policies for both the defender and the adversary to an arbitrary stochastic policy of the other. We then use these in a double-oracle framework to obtain an approximate equilibrium of the game, which in turn yields a robust stochastic policy for the defender. Extensive experiments using case studies in fraud and intrusion detection demonstrate that our approach is effective in creating robust alert prioritization policies.

北京阿比特科技有限公司