亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the 21st century, the industry of drones, also known as Unmanned Aerial Vehicles (UAVs), has witnessed a rapid increase with its large number of airspace users. The tremendous benefits of this technology in civilian applications such as hostage rescue and parcel delivery will integrate smart cities in the future. Nowadays, the affordability of commercial drones expands its usage at a large scale. However, the development of drone technology is associated with vulnerabilities and threats due to the lack of efficient security implementations. Moreover, the complexity of UAVs in software and hardware triggers potential security and privacy issues. Thus, posing significant challenges for the industry, academia, and governments. In this paper, we extensively survey the security and privacy issues of UAVs by providing a systematic classification at four levels: Hardware-level, Software-level, Communication-level, and Sensor-level. In particular, for each level, we thoroughly investigate (1) common vulnerabilities affecting UAVs for potential attacks from malicious actors, (2) existing threats that are jeopardizing the civilian application of UAVs, (3) active and passive attacks performed by the adversaries to compromise the security and privacy of UAVs, (4) possible countermeasures and mitigation techniques to protect UAVs from such malicious activities. In addition, we summarize the takeaways that highlight lessons learned about UAVs' security and privacy issues. Finally, we conclude our survey by presenting the critical pitfalls and suggesting promising future research directions for security and privacy of UAVs.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

The advent of Bitcoin, and consequently Blockchain, has ushered in a new era of decentralization. Blockchain enables mutually distrusting entities to work collaboratively to attain a common objective. However, current Blockchain technologies lack scalability, which limits their use in Internet of Things (IoT) applications. Many devices on the Internet have the computational and communication capabilities to facilitate decision-making. These devices will soon be a 50 billion node network. Furthermore, new IoT business models such as Sensor-as-a-Service (SaaS) require a robust Trust and Reputation System (TRS). In this paper, we introduce an innovative distributed ledger combining Tangle and Blockchain as a TRS framework for IoT. The combination of Tangle and Blockchain provides maintainability of the former and scalability of the latter. The proposed ledger can handle large numbers of IoT device transactions and facilitates low power nodes joining and contributing. Employing a distributed ledger mitigates many threats, such as whitewashing attacks. Along with combining payments and rating protocols, the proposed approach provides cleaner data to the upper layer reputation algorithm.

Ensuring the quality of automated driving systems is a major challenge the automotive industry is facing. In this context, quality defines the degree to which an object meets expectations and requirements. Especially, automated vehicles at SAE level 4 and 5 will be expected to operate safely in various contexts and complex situations without misconduct. Thus, a systematic approach is needed to show their safe operation. A way to address this challenge is simulation-based testing as pure physical testing is not feasible. During simulation-based testing, the data used to evaluate the actual quality of an automated driving system are generated using a simulation. However, to rely on these simulation data, the overall simulation, which also includes its simulation models, must provide a certain quality level. This quality level depends on the intended purpose for which the generated simulation data should be used. Therefore, three categories of quality can be considered: quality of the automated driving system and simulation quality, consisting of simulation model quality and scenario quality. Hence, quality must be determined and evaluated in various process steps in developing and testing automated driving systems, the overall simulation, and the simulation models used for the simulation. In this paper, we propose a taxonomy to serve a better understanding of the concept of quality in the development and testing process to have a clear separation and insight where further testing is needed -- both in terms of automated driving systems and simulation, including their simulation models and scenarios used for testing.

Meta-learning has gained wide popularity as a training framework that is more data-efficient than traditional machine learning methods. However, its generalization ability in complex task distributions, such as multimodal tasks, has not been thoroughly studied. Recently, some studies on multimodality-based meta-learning have emerged. This survey provides a comprehensive overview of the multimodality-based meta-learning landscape in terms of the methodologies and applications. We first formalize the definition of meta-learning and multimodality, along with the research challenges in this growing field, such as how to enrich the input in few-shot or zero-shot scenarios and how to generalize the models to new tasks. We then propose a new taxonomy to systematically discuss typical meta-learning algorithms combined with multimodal tasks. We investigate the contributions of related papers and summarize them by our taxonomy. Finally, we propose potential research directions for this promising field.

In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.

Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.

We survey research on self-driving cars published in the literature focusing on autonomous cars developed since the DARPA challenges, which are equipped with an autonomy system that can be categorized as SAE level 3 or higher. The architecture of the autonomy system of self-driving cars is typically organized into the perception system and the decision-making system. The perception system is generally divided into many subsystems responsible for tasks such as self-driving-car localization, static obstacles mapping, moving obstacles detection and tracking, road mapping, traffic signalization detection and recognition, among others. The decision-making system is commonly partitioned as well into many subsystems responsible for tasks such as route planning, path planning, behavior selection, motion planning, and control. In this survey, we present the typical architecture of the autonomy system of self-driving cars. We also review research on relevant methods for perception and decision making. Furthermore, we present a detailed description of the architecture of the autonomy system of the UFES's car, IARA. Finally, we list prominent autonomous research cars developed by technology companies and reported in the media.

Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.

北京阿比特科技有限公司