亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although the NLP community has adopted central differential privacy as a go-to framework for privacy-preserving model training or data sharing, the choice and interpretation of the key parameter, privacy budget $\varepsilon$ that governs the strength of privacy protection, remains largely arbitrary. We argue that determining the $\varepsilon$ value should not be solely in the hands of researchers or system developers, but must also take into account the actual people who share their potentially sensitive data. In other words: Would you share your instant messages for $\varepsilon$ of 10? We address this research gap by designing, implementing, and conducting a behavioral experiment (311 lay participants) to study the behavior of people in uncertain decision-making situations with respect to privacy-threatening situations. Framing the risk perception in terms of two realistic NLP scenarios and using a vignette behavioral study help us determine what $\varepsilon$ thresholds would lead lay people to be willing to share sensitive textual data - to our knowledge, the first study of its kind.

相關內容

NLP:自然語言處理

Interests in the value of digital technologies for its potential uses to increase supply chain resilience (SCRes) are increasing in light to the industry 4.0 and the global pandemic. Utilization of Recommender systems (RS) as a supply chain (SC) resilience measure is neglected although RS is a capable tool to enhance SC resilience from a reactive aspect. To address this problem, this research proposed a novel data-driven supply chain disruption response framework based on the intelligent recommender system techniques and validated the conceptual model through a practical use case. Results show that our framework can be implemented as an effective SC disruption mitigation measure in the very first response phrase and help SC participants get better reaction performance after the SC disruption.

With the development of laws and regulations related to privacy preservation, it has become difficult to collect personal data to perform machine learning. In this context, federated learning, which is distributed learning without sharing personal data, has been proposed. In this paper, we focus on federated learning for user authentication. We show that it is difficult to achieve both privacy preservation and high accuracy with existing methods. To address these challenges, we propose IPFed which is privacy-preserving federated learning using random projection for class embedding. Furthermore, we prove that IPFed is capable of learning equivalent to the state-of-the-art method. Experiments on face image datasets show that IPFed can protect the privacy of personal data while maintaining the accuracy of the state-of-the-art method.

Large language models are now tuned to align with the goals of their creators, namely to be "helpful and harmless." These models should respond helpfully to user questions, but refuse to answer requests that could cause harm. However, adversarial users can construct inputs which circumvent attempts at alignment. In this work, we study adversarial alignment, and ask to what extent these models remain aligned when interacting with an adversarial user who constructs worst-case inputs (adversarial examples). These inputs are designed to cause the model to emit harmful content that would otherwise be prohibited. We show that existing NLP-based optimization attacks are insufficiently powerful to reliably attack aligned text models: even when current NLP-based attacks fail, we can find adversarial inputs with brute force. As a result, the failure of current attacks should not be seen as proof that aligned text models remain aligned under adversarial inputs. However the recent trend in large-scale ML models is multimodal models that allow users to provide images that influence the text that is generated. We show these models can be easily attacked, i.e., induced to perform arbitrary un-aligned behavior through adversarial perturbation of the input image. We conjecture that improved NLP attacks may demonstrate this same level of adversarial control over text-only models.

The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.

Wilf-Zeilberger pairs are fundamental in the algorithmic theory of Wilf and Zeilberger for computer-generated proofs of combinatorial identities. Wilf-Zeilberger forms are their high-dimensional generalizations, which can be used for proving and discovering convergence acceleration formulas. This paper presents a structural description of all possible rational such forms, which can be viewed as an additive analog of the classical Ore-Sato theorem. Based on this analog, we show a structural decomposition of so-called multivariate hyperarithmetic terms, which extend multivariate hypergeometric terms to the additive setting.

The growing interest in vision-language models (VLMs) has been driven by improvements in large language models and vision transformers. Despite the abundance of literature on this subject, we observe that critical decisions regarding the design of VLMs are often not justified. We argue that these unsupported decisions impede progress in the field by making it difficult to identify which choices improve model performance. To address this issue, we conduct extensive experiments around pre-trained models, architecture choice, data, and training methods. Our consolidation of findings includes the development of Idefics2, an efficient foundational VLM of 8 billion parameters. Idefics2 achieves state-of-the-art performance within its size category across various multimodal benchmarks, and is often on par with models four times its size. We release the model (base, instructed, and chat) along with the datasets created for its training.

Generalization to unseen data remains poorly understood for deep learning classification and foundation models. How can one assess the ability of networks to adapt to new or extended versions of their input space in the spirit of few-shot learning, out-of-distribution generalization, and domain adaptation? Which layers of a network are likely to generalize best? We provide a new method for evaluating the capacity of networks to represent a sampled domain, regardless of whether the network has been trained on all classes in the domain. Our approach is the following: after fine-tuning state-of-the-art pre-trained models for visual classification on a particular domain, we assess their performance on data from related but distinct variations in that domain. Generalization power is quantified as a function of the latent embeddings of unseen data from intermediate layers for both unsupervised and supervised settings. Working throughout all stages of the network, we find that (i) high classification accuracy does not imply high generalizability; and (ii) deeper layers in a model do not always generalize the best, which has implications for pruning. Since the trends observed across datasets are largely consistent, we conclude that our approach reveals (a function of) the intrinsic capacity of the different layers of a model to generalize.

We propose an abstract conceptual framework for analysing complex security systems using a new notion of modes and mode transitions. A mode is an independent component of a system with its own objectives, monitoring data, algorithms, and scope and limits. The behaviour of a mode, including its transitions to other modes, is determined by interpretations of the mode's monitoring data in the light of its objectives and capabilities -- these interpretations we call beliefs. We formalise the conceptual framework mathematically and, by quantifying and visualising beliefs in higher-dimensional geometric spaces, we argue our models may help both design, analyse and explain systems. The mathematical models are based on simplicial complexes.

The LSTM network was proposed to overcome the difficulty in learning long-term dependence, and has made significant advancements in applications. With its success and drawbacks in mind, this paper raises the question - do RNN and LSTM have long memory? We answer it partially by proving that RNN and LSTM do not have long memory from a statistical perspective. A new definition for long memory networks is further introduced, and it requires the model weights to decay at a polynomial rate. To verify our theory, we convert RNN and LSTM into long memory networks by making a minimal modification, and their superiority is illustrated in modeling long-term dependence of various datasets.

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

北京阿比特科技有限公司