In this article we present a utility function for Active SLAM (A-SLAM) which utilizes map entropy along with D-Optimality criterion metrices for weighting goal frontier candidates. We propose a utility function for frontier goal selection that exploits the occupancy grid map by utilizing the path entropy and favors unknown map locations for maximum area coverage while maintaining a low localization and mapping uncertainties. We quantify the efficiency of our method using various graph connectivity matrices and map efficiency indexes for an environment exploration task. Using simulation and experimental results against similar approaches we achieve an average of 32% more coverage using publicly available data sets.
Incorporating neural networks for the solution of Ordinary Differential Equations (ODEs) represents a pivotal research direction within computational mathematics. Within neural network architectures, the integration of the intrinsic structure of ODEs offers advantages such as enhanced predictive capabilities and reduced data utilization. Among these structural ODE forms, the Lagrangian representation stands out due to its significant physical underpinnings. Building upon this framework, Bhattoo introduced the concept of Lagrangian Neural Networks (LNNs). Then in this article, we introduce a groundbreaking extension (Genralized Lagrangian Neural Networks) to Lagrangian Neural Networks (LNNs), innovatively tailoring them for non-conservative systems. By leveraging the foundational importance of the Lagrangian within Lagrange's equations, we formulate the model based on the generalized Lagrange's equation. This modification not only enhances prediction accuracy but also guarantees Lagrangian representation in non-conservative systems. Furthermore, we perform various experiments, encompassing 1-dimensional and 2-dimensional examples, along with an examination of the impact of network parameters, which proved the superiority of Generalized Lagrangian Neural Networks(GLNNs).
We study monotone submodular maximization under general matroid constraints in the online setting. We prove that online optimization of a large class of submodular functions, namely, weighted threshold potential functions, reduces to online convex optimization (OCO). This is precisely because functions in this class admit a concave relaxation; as a result, OCO policies, coupled with an appropriate rounding scheme, can be used to achieve sublinear regret in the combinatorial setting. We show that our reduction extends to many different versions of the online learning problem, including the dynamic regret, bandit, and optimistic-learning settings.
Synthetic data generation, a cornerstone of Generative Artificial Intelligence (GAI), signifies a paradigm shift in data science by addressing data scarcity and privacy while enabling unprecedented performance. As synthetic data gains prominence, questions arise concerning the accuracy of statistical methods when applied to synthetic data compared to raw data. This article introduces the Synthetic Data Generation for Analytics (Syn) framework. This framework employs statistical methods on high-fidelity synthetic data generated by advanced models such as tabular diffusion and Generative Pre-trained Transformer (GPT) models. These models, trained on raw data, are further enhanced with insights from pertinent studies through knowledge transfer. A significant discovery within this framework is the generational effect: the error of a statistical method on synthetic data initially diminishes with additional synthetic data but may eventually increase or plateau. This phenomenon, rooted in the complexities of replicating raw data distributions, highlights a "reflection point" - an optimal threshold in the size of synthetic data determined by specific error metrics. Through three case studies - sentiment analysis of texts, predictive modeling of structured data, and inference in tabular data - we demonstrate the effectiveness of this framework over traditional ones. We underline its potential to amplify various statistical methods, including gradient boosting for prediction and hypothesis testing, thereby underscoring the transformative potential of synthetic data generation in data science.
Stable Diffusion XL (SDXL) has become the best open source text-to-image model (T2I) for its versatility and top-notch image quality. Efficiently addressing the computational demands of SDXL models is crucial for wider reach and applicability. In this work, we introduce two scaled-down variants, Segmind Stable Diffusion (SSD-1B) and Segmind-Vega, with 1.3B and 0.74B parameter UNets, respectively, achieved through progressive removal using layer-level losses focusing on reducing the model size while preserving generative quality. We release these models weights at //hf.co/Segmind. Our methodology involves the elimination of residual networks and transformer blocks from the U-Net structure of SDXL, resulting in significant reductions in parameters, and latency. Our compact models effectively emulate the original SDXL by capitalizing on transferred knowledge, achieving competitive results against larger multi-billion parameter SDXL. Our work underscores the efficacy of knowledge distillation coupled with layer-level losses in reducing model size while preserving the high-quality generative capabilities of SDXL, thus facilitating more accessible deployment in resource-constrained environments.
2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.
Graph Convolutional Networks (GCNs) have recently become the primary choice for learning from graph-structured data, superseding hash fingerprints in representing chemical compounds. However, GCNs lack the ability to take into account the ordering of node neighbors, even when there is a geometric interpretation of the graph vertices that provides an order based on their spatial positions. To remedy this issue, we propose Geometric Graph Convolutional Network (geo-GCN) which uses spatial features to efficiently learn from graphs that can be naturally located in space. Our contribution is threefold: we propose a GCN-inspired architecture which (i) leverages node positions, (ii) is a proper generalisation of both GCNs and Convolutional Neural Networks (CNNs), (iii) benefits from augmentation which further improves the performance and assures invariance with respect to the desired properties. Empirically, geo-GCN outperforms state-of-the-art graph-based methods on image classification and chemical tasks.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.