亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The lottery ticket hypothesis has sparked the rapid development of pruning algorithms that aim to reduce the computational costs associated with deep learning during training and model deployment. Currently, such algorithms are primarily evaluated on imaging data, for which we lack ground truth information and thus the understanding of how sparse lottery tickets could be. To fill this gap, we develop a framework that allows us to plant and hide winning tickets with desirable properties in randomly initialized neural networks. To analyze the ability of state-of-the-art pruning to identify tickets of extreme sparsity, we design and hide such tickets solving four challenging tasks. In extensive experiments, we observe similar trends as in imaging studies, indicating that our framework can provide transferable insights into realistic problems. Additionally, we can now see beyond such relative trends and highlight limitations of current pruning methods. Based on our results, we conclude that the current limitations in ticket sparsity are likely of algorithmic rather than fundamental nature. We anticipate that comparisons to planted tickets will facilitate future developments of efficient pruning algorithms.

相關內容

End-to-end spoken language understanding (SLU) predicts intent directly from audio using a single model. It promises to improve the performance of assistant systems by leveraging acoustic information lost in the intermediate textual representation and preventing cascading errors from Automatic Speech Recognition (ASR). Further, having one unified model has efficiency advantages when deploying assistant systems on-device. However, the limited number of public audio datasets with semantic parse labels hinders the research progress in this area. In this paper, we release the Spoken Task-Oriented semantic Parsing (STOP) dataset, the largest and most complex SLU dataset to be publicly available. Additionally, we define low-resource splits to establish a benchmark for improving SLU when limited labeled data is available. Furthermore, in addition to the human-recorded audio, we are releasing a TTS-generated version to benchmark the performance for low-resource domain adaptation of end-to-end SLU systems. Initial experimentation show end-to-end SLU models performing slightly worse than their cascaded counterparts, which we hope encourages future work in this direction.

The feeling of anxiety and loneliness among aging population has been recently amplified by the COVID-19 related lockdowns. Emotion-aware multimodal bot application combining voice and visual interface was developed to address the problem in the group of older citizens. The application is novel as it combines three main modules: information, emotion selection and psychological intervention, with the aim of improving human well-being. The preliminary study with target group confirmed that multimodality improves usability and that the information module is essential for participating in a psychological intervention. The solution is universal and can also be applied to areas not directly related to COVID-19 pandemic.

Efficient representation of articulated objects such as human bodies is an important problem in computer vision and graphics. To efficiently simulate deformation, existing approaches represent 3D objects using polygonal meshes and deform them using skinning techniques. This paper introduces neural articulated shape approximation (NASA), an alternative framework that enables efficient representation of articulated deformable objects using neural indicator functions that are conditioned on pose. Occupancy testing using NASA is straightforward, circumventing the complexity of meshes and the issue of water-tightness. We demonstrate the effectiveness of NASA for 3D tracking applications, and discuss other potential extensions.

In recent years, video instance segmentation (VIS) has been largely advanced by offline models, while online models gradually attracted less attention possibly due to their inferior performance. However, online methods have their inherent advantage in handling long video sequences and ongoing videos while offline models fail due to the limit of computational resources. Therefore, it would be highly desirable if online models can achieve comparable or even better performance than offline models. By dissecting current online models and offline models, we demonstrate that the main cause of the performance gap is the error-prone association between frames caused by the similar appearance among different instances in the feature space. Observing this, we propose an online framework based on contrastive learning that is able to learn more discriminative instance embeddings for association and fully exploit history information for stability. Despite its simplicity, our method outperforms all online and offline methods on three benchmarks. Specifically, we achieve 49.5 AP on YouTube-VIS 2019, a significant improvement of 13.2 AP and 2.1 AP over the prior online and offline art, respectively. Moreover, we achieve 30.2 AP on OVIS, a more challenging dataset with significant crowding and occlusions, surpassing the prior art by 14.8 AP. The proposed method won first place in the video instance segmentation track of the 4th Large-scale Video Object Segmentation Challenge (CVPR2022). We hope the simplicity and effectiveness of our method, as well as our insight into current methods, could shed light on the exploration of VIS models.

Lighting is a determining factor in photography that affects the style, expression of emotion, and even quality of images. Creating or finding satisfying lighting conditions, in reality, is laborious and time-consuming, so it is of great value to develop a technology to manipulate illumination in an image as post-processing. Although previous works have explored techniques based on the physical viewpoint for relighting images, extensive supervisions and prior knowledge are necessary to generate reasonable images, restricting the generalization ability of these works. In contrast, we take the viewpoint of image-to-image translation and implicitly merge ideas of the conventional physical viewpoint. In this paper, we present an Illumination-Aware Network (IAN) which follows the guidance from hierarchical sampling to progressively relight a scene from a single image with high efficiency. In addition, an Illumination-Aware Residual Block (IARB) is designed to approximate the physical rendering process and to extract precise descriptors of light sources for further manipulations. We also introduce a depth-guided geometry encoder for acquiring valuable geometry- and structure-related representations once the depth information is available. Experimental results show that our proposed method produces better quantitative and qualitative relighting results than previous state-of-the-art methods. The code and models are publicly available on //github.com/NK-CS-ZZL/IAN.

Despite recent advances in semantic manipulation using StyleGAN, semantic editing of real faces remains challenging. The gap between the $W$ space and the $W$+ space demands an undesirable trade-off between reconstruction quality and editing quality. To solve this problem, we propose to expand the latent space by replacing fully-connected layers in the StyleGAN's mapping network with attention-based transformers. This simple and effective technique integrates the aforementioned two spaces and transforms them into one new latent space called $W$++. Our modified StyleGAN maintains the state-of-the-art generation quality of the original StyleGAN with moderately better diversity. But more importantly, the proposed $W$++ space achieves superior performance in both reconstruction quality and editing quality. Despite these significant advantages, our $W$++ space supports existing inversion algorithms and editing methods with only negligible modifications thanks to its structural similarity with the $W/W$+ space. Extensive experiments on the FFHQ dataset prove that our proposed $W$++ space is evidently more preferable than the previous $W/W$+ space for real face editing. The code is publicly available for research purposes at //github.com/AnonSubm2021/TransStyleGAN.

Spiking Neural Networks (SNNs) have recently emerged as a new generation of low-power deep neural networks, which is suitable to be implemented on low-power mobile/edge devices. As such devices have limited memory storage, neural pruning on SNNs has been widely explored in recent years. Most existing SNN pruning works focus on shallow SNNs (2~6 layers), however, deeper SNNs (>16 layers) are proposed by state-of-the-art SNN works, which is difficult to be compatible with the current SNN pruning work. To scale up a pruning technique towards deep SNNs, we investigate Lottery Ticket Hypothesis (LTH) which states that dense networks contain smaller subnetworks (i.e., winning tickets) that achieve comparable performance to the dense networks. Our studies on LTH reveal that the winning tickets consistently exist in deep SNNs across various datasets and architectures, providing up to 97% sparsity without huge performance degradation. However, the iterative searching process of LTH brings a huge training computational cost when combined with the multiple timesteps of SNNs. To alleviate such heavy searching cost, we propose Early-Time (ET) ticket where we find the important weight connectivity from a smaller number of timesteps. The proposed ET ticket can be seamlessly combined with a common pruning techniques for finding winning tickets, such as Iterative Magnitude Pruning (IMP) and Early-Bird (EB) tickets. Our experiment results show that the proposed ET ticket reduces search time by up to 38% compared to IMP or EB methods. Code is available at Github.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.

北京阿比特科技有限公司