亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Causal inference of exact individual treatment outcomes in the presence of hidden confounders is rarely possible. Instead, recent work has adapted conformal prediction to produce outcome intervals. Unfortunately this family of methods tends to be overly conservative, sometimes giving uninformative intervals. We introduce an alternative approach termed Caus-Modens, for characterizing causal outcome intervals by modulated ensembles. Motivated from Bayesian statistics and ensembled uncertainty quantification, Caus-Modens gives tighter outcome intervals in practice, measured by the necessary interval size to achieve sufficient coverage on three separate benchmarks. The last benchmark is a novel usage of GPT-4 for observational experiments with unknown but probeable ground truth.

相關內容

A major challenge in Explainable AI is in correctly interpreting activations of hidden neurons: accurate interpretations would provide insights into the question of what a deep learning system has internally detected as relevant on the input, demystifying the otherwise black-box character of deep learning systems. The state of the art indicates that hidden node activations can, in some cases, be interpretable in a way that makes sense to humans, but systematic automated methods that would be able to hypothesize and verify interpretations of hidden neuron activations are underexplored. In this paper, we provide such a method and demonstrate that it provides meaningful interpretations. Our approach is based on using large-scale background knowledge approximately 2 million classes curated from the Wikipedia concept hierarchy together with a symbolic reasoning approach called Concept Induction based on description logics, originally developed for applications in the Semantic Web field. Our results show that we can automatically attach meaningful labels from the background knowledge to individual neurons in the dense layer of a Convolutional Neural Network through a hypothesis and verification process.

Over the last decade, there has been a vast increase in eating disorder diagnoses and eating disorder-attributed deaths, reaching their zenith during the Covid-19 pandemic. This immense growth derived in part from the stressors of the pandemic but also from increased exposure to social media, which is rife with content that promotes eating disorders. This study aimed to create a multimodal deep learning model that can determine if a given social media post promotes eating disorders based on a combination of visual and textual data. A labeled dataset of Tweets was collected from Twitter, upon which twelve deep learning models were trained and tested. Based on model performance, the most effective deep learning model was the multimodal fusion of the RoBERTa natural language processing model and the MaxViT image classification model, attaining accuracy and F1 scores of 95.9% and 0.959, respectively. The RoBERTa and MaxViT fusion model, deployed to classify an unlabeled dataset of posts from the social media sites Tumblr and Reddit, generated results akin to those of previous research studies that did not employ artificial intelligence-based techniques, indicating that deep learning models can develop insights congruent to those of researchers. Additionally, the model was used to conduct a timeseries analysis of yet unseen Tweets from eight Twitter hashtags, uncovering that, since 2014, the relative abundance of content that promotes eating disorders has decreased drastically within those communities. Despite this reduction, by 2018, content that promotes eating disorders had either stopped declining or increased in ampleness anew on these hashtags.

Given the prominence of targeted therapy and immunotherapy in cancer treatment, it becomes imperative to consider heterogeneity in patients' responses to treatments, which contributes greatly to the widely used proportional hazard assumption invalidated as in several clinical trials. To address the challenge, we develop a Dual Cox model theory including a Dual Cox model and a fitting algorithm. As one of the finite mixture models, the proposed Dual Cox model consists of two independent Cox models based on patients' responses to one designated treatment (usually the experimental one) in the clinical trial. Responses of patients in the designated treatment arm can be observed and hence those patients are known responders or non-responders. From the perspective of subgroup classification, such a phenomenon renders the proposed model as a semi-supervised problem, compared to the typical finite mixture model where the subgroup classification is usually unsupervised. A specialized expectation-maximization algorithm is utilized for model fitting, where the initial parameter values are estimated from the patients in the designated treatment arm and then the iteratively reweighted least squares (IRLS) is applied. Under mild assumptions, the consistency and asymptotic normality of its estimators of effect parameters in each Cox model are established. In addition to strong theoretical properties, simulations demonstrate that our theory can provide a good approximation to a wide variety of survival models, is relatively robust to the change of censoring rate and response rate, and has a high prediction accuracy and stability in subgroup classification while it has a fast convergence rate. Finally, we apply our theory to two clinical trials with cross-overed KM plots and identify the subgroups where the subjects benefit from the treatment or not.

In implant prosthesis treatment, the design of the surgical guide heavily relies on the manual location of the implant position, which is subjective and prone to doctor's experiences. When deep learning based methods has started to be applied to address this problem, the space between teeth are various and some of them might present similar texture characteristic with the actual implant region. Both problems make a big challenge for the implant position prediction. In this paper, we develop a two-stream implant position regression framework (TSIPR), which consists of an implant region detector (IRD) and a multi-scale patch embedding regression network (MSPENet), to address this issue. For the training of IRD, we extend the original annotation to provide additional supervisory information, which contains much more rich characteristic and do not introduce extra labeling costs. A multi-scale patch embedding module is designed for the MSPENet to adaptively extract features from the images with various tooth spacing. The global-local feature interaction block is designed to build the encoder of MSPENet, which combines the transformer and convolution for enriched feature representation. During inference, the RoI mask extracted from the IRD is used to refine the prediction results of the MSPENet. Extensive experiments on a dental implant dataset through five-fold cross-validation demonstrated that the proposed TSIPR achieves superior performance than existing methods.

Accurate segmentation of brain vessels is crucial for cerebrovascular disease diagnosis and treatment. However, existing methods face challenges in capturing small vessels and handling datasets that are partially or ambiguously annotated. In this paper, we propose an adaptive semi-supervised approach to address these challenges. Our approach incorporates innovative techniques including progressive semi-supervised learning, adaptative training strategy, and boundary enhancement. Experimental results on 3DRA datasets demonstrate the superiority of our method in terms of mesh-based segmentation metrics. By leveraging the partially and ambiguously labeled data, which only annotates the main vessels, our method achieves impressive segmentation performance on mislabeled fine vessels, showcasing its potential for clinical applications.

Domain transfer is a prevalent challenge in modern neural Information Retrieval (IR). To overcome this problem, previous research has utilized domain-specific manual annotations and synthetic data produced by consistency filtering to finetune a general ranker and produce a domain-specific ranker. However, training such consistency filters are computationally expensive, which significantly reduces the model efficiency. In addition, consistency filtering often struggles to identify retrieval intentions and recognize query and corpus distributions in a target domain. In this study, we evaluate a more efficient solution: replacing the consistency filter with either direct pseudo-labeling, pseudo-relevance feedback, or unsupervised keyword generation methods for achieving consistent filtering-free unsupervised dense retrieval. Our extensive experimental evaluations demonstrate that, on average, TextRank-based pseudo relevance feedback outperforms other methods. Furthermore, we analyzed the training and inference efficiency of the proposed paradigm. The results indicate that filtering-free unsupervised learning can continuously improve training and inference efficiency while maintaining retrieval performance. In some cases, it can even improve performance based on particular datasets.

Benefiting from the sequence-level knowledge distillation, the Non-Autoregressive Transformer (NAT) achieves great success in neural machine translation tasks. However, existing knowledge distillation has side effects, such as propagating errors from the teacher to NAT students, which may limit further improvements of NAT models and are rarely discussed in existing research. In this paper, we introduce selective knowledge distillation by introducing an NAT evaluator to select NAT-friendly targets that are of high quality and easy to learn. In addition, we introduce a simple yet effective progressive distillation method to boost NAT performance. Experiment results on multiple WMT language directions and several representative NAT models show that our approach can realize a flexible trade-off between the quality and complexity of training data for NAT models, achieving strong performances. Further analysis shows that distilling only 5% of the raw translations can help an NAT outperform its counterpart trained on raw data by about 2.4 BLEU.

Over the last two decades, pseudospectral methods based on Lagrange interpolants have flourished in solving trajectory optimization problems and their flight implementations. In a seemingly unjustified departure from these highly successful methods, a new starting point for trajectory optimization is proposed. This starting point is based on the recently-developed concept of universal Birkhoff interpolants. The new approach offers a substantial computational upgrade to the Lagrange theory in completely flattening the rapid growth of the condition numbers from O(N2) to O(1), where N is the number of grid points. In addition, the Birkhoff-specific primal-dual computations are isolated to a well-conditioned linear system even for nonlinear, nonconvex problems. This is part I of a two-part paper. In part I, a new theory is developed on the basis of two hypotheses. Other than these hypotheses, the theoretical development makes no assumptions on the choices of basis functions or the selection of grid points. Several covector mapping theorems are proved to establish the mathematical equivalence between direct and indirect Birkhoff methods. In part II of this paper (with Proulx), it is shown that a select family of Gegenbauer grids satisfy the two hypotheses required for the theory to hold. Numerical examples in part II illustrate the power and utility of the new theory.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司