In this work, our goals are two fold: large-vocabulary continuous sign language recognition (CSLR), and sign language retrieval. To this end, we introduce a multi-task Transformer model, CSLR2, that is able to ingest a signing sequence and output in a joint embedding space between signed language and spoken language text. To enable CSLR evaluation in the large-vocabulary setting, we introduce new dataset annotations that have been manually collected. These provide continuous sign-level annotations for six hours of test videos, and will be made publicly available. We demonstrate that by a careful choice of loss functions, training the model for both the CSLR and retrieval tasks is mutually beneficial in terms of performance -- retrieval improves CSLR performance by providing context, while CSLR improves retrieval with more fine-grained supervision. We further show the benefits of leveraging weak and noisy supervision from large-vocabulary datasets such as BOBSL, namely sign-level pseudo-labels, and English subtitles. Our model significantly outperforms the previous state of the art on both tasks.
There are two main barriers to using large language models (LLMs) in clinical reasoning. Firstly, while LLMs exhibit significant promise in Natural Language Processing (NLP) tasks, their performance in complex reasoning and planning falls short of expectations. Secondly, LLMs use uninterpretable methods to make clinical decisions that are fundamentally different from the clinician's cognitive processes. This leads to user distrust. In this paper, we present a multi-agent framework called ArgMed-Agents, which aims to enable LLM-based agents to make explainable clinical decision reasoning through interaction. ArgMed-Agents performs self-argumentation iterations via Argumentation Scheme for Clinical Discussion (a reasoning mechanism for modeling cognitive processes in clinical reasoning), and then constructs the argumentation process as a directed graph representing conflicting relationships. Ultimately, use symbolic solver to identify a series of rational and coherent arguments to support decision. We construct a formal model of ArgMed-Agents and present conjectures for theoretical guarantees. ArgMed-Agents enables LLMs to mimic the process of clinical argumentative reasoning by generating explanations of reasoning in a self-directed manner. The setup experiments show that ArgMed-Agents not only improves accuracy in complex clinical decision reasoning problems compared to other prompt methods, but more importantly, it provides users with decision explanations that increase their confidence.
Integrating inertial measurement units (IMUs) with large language models (LLMs) advances multimodal AI by enhancing human activity understanding. We introduce SensorCaps, a dataset of 26,288 IMU-derived activity narrations, and OpenSQA, an instruction-following dataset with 257,562 question-answer pairs. Combining LIMU-BERT and Llama, we develop LLaSA, a Large Multimodal Agent capable of interpreting and responding to activity and motion analysis queries. Our evaluation demonstrates LLaSA's effectiveness in activity classification and question answering, highlighting its potential in healthcare, sports science, and human-computer interaction. These contributions advance sensor-aware language models and open new research avenues. Our code repository and datasets can be found on //github.com/BASHLab/LLaSA.
Improving the performance of large language models (LLMs) in complex question-answering (QA) scenarios has always been a research focal point. Recent studies have attempted to enhance LLMs' performance by combining step-wise planning with external retrieval. While effective for advanced models like GPT-3.5, smaller LLMs face challenges in decomposing complex questions, necessitating supervised fine-tuning. Previous work has relied on manual annotation and knowledge distillation from teacher LLMs, which are time-consuming and not accurate enough. In this paper, we introduce a novel framework for enhancing LLMs' planning capabilities by using planning data derived from knowledge graphs (KGs). LLMs fine-tuned with this data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval. Evaluations on multiple datasets, including our newly proposed benchmark, highlight the effectiveness of our framework and the benefits of KG-derived planning data.
Large language models (LLMs) excel at a variety of natural language processing tasks, yet they struggle to generate personalized content for individuals, particularly in real-world scenarios like scientific writing. Addressing this challenge, we introduce Step-Back Profiling to personalize LLMs by distilling user history into concise profiles, including essential traits and preferences of users. Regarding our experiments, we construct a Personalized Scientific Writing (PSW) dataset to study multiuser personalization. PSW requires the models to write scientific papers given specialized author groups with diverse academic backgrounds. As for the results, we demonstrate the effectiveness of capturing user characteristics via Step-Back Profiling for collaborative writing. Moreover, our approach outperforms the baselines by up to 3.6 points on the general personalization benchmark (LaMP), including 7 personalization LLM tasks. Our extensive ablation studies validate the contributions of different components in our method and provide insights into our task definition. Our dataset and code are available at \url{//github.com/gersteinlab/step-back-profiling}.
It is imperative for Large language models (LLMs) to follow instructions with elaborate requirements (i.e. Complex Instructions Following). Yet, it remains under-explored how to enhance the ability of LLMs to follow complex instructions with multiple constraints. To bridge the gap, we initially study what training data is effective in enhancing complex constraints following abilities. We found that training LLMs with instructions containing multiple constraints enhances their understanding of complex instructions, especially those with lower complexity levels. The improvement can even generalize to compositions of out-of-domain constraints. Additionally, we further propose methods addressing how to obtain and utilize the effective training data. Finally, we conduct extensive experiments to prove the effectiveness of our methods in terms of overall performance and training efficiency. We also demonstrate that our methods improve models' ability to follow instructions generally and generalize effectively across out-of-domain, in-domain, and adversarial settings, while maintaining general capabilities.
Large language models have achieved remarkable success on general NLP tasks, but they may fall short for domain-specific problems. Recently, various Retrieval-Augmented Large Language Models (RALLMs) are proposed to address this shortcoming. However, existing evaluation tools only provide a few baselines and evaluate them on various domains without mining the depth of domain knowledge. In this paper, we address the challenges of evaluating RALLMs by introducing the R-Eval toolkit, a Python toolkit designed to streamline the evaluation of different RAG workflows in conjunction with LLMs. Our toolkit, which supports popular built-in RAG workflows and allows for the incorporation of customized testing data on the specific domain, is designed to be user-friendly, modular, and extensible. We conduct an evaluation of 21 RALLMs across three task levels and two representative domains, revealing significant variations in the effectiveness of RALLMs across different tasks and domains. Our analysis emphasizes the importance of considering both task and domain requirements when choosing a RAG workflow and LLM combination. We are committed to continuously maintaining our platform at //github.com/THU-KEG/R-Eval to facilitate both the industry and the researchers.
Knowledge editing aims to adjust the knowledge within large language models (LLMs) to prevent their responses from becoming obsolete or inaccurate. However, existing works on knowledge editing are primarily conducted in a single language, which is inadequate for multilingual language models. In this paper, we focus on multilingual knowledge editing (MKE), which requires propagating updates across multiple languages. This necessity poses a significant challenge for the task. Furthermore, the limited availability of a comprehensive dataset for MKE exacerbates this challenge, hindering progress in this area. Hence, we introduce the Multilingual Knowledge Editing Benchmark (MKEB), a novel dataset comprising 12 languages and providing a complete evaluation framework. Additionally, we propose a method that enhances Multilingual knowledge Editing with neuron-Masked Low-Rank Adaptation (MEMLA). Specifically, we identify two categories of knowledge neurons to improve editing precision. Moreover, we perform LoRA-based editing with neuron masks to efficiently modify parameters and facilitate the propagation of updates across multiple languages. Experiments demonstrate that our method outperforms existing baselines and significantly enhances the multi-hop reasoning capability of the edited model, with minimal impact on its downstream task performance. The dataset and code will be made publicly available.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.