This paper considers a multi-group multicasting scenario facilitated by a reconfigurable intelligent surface (RIS). We propose a fast and scalable algorithm for the joint design of the base station (BS) multicast beamforming and the RIS passive beamforming to minimize the transmit power subject to the quality-of-service (QoS) constraints. By exploring the structure of the joint optimization problem, we show that this QoS problem can be broken into a BS multicast QoS subproblem and an RIS max-min-fair (MMF) multicast subproblem, which are solved alternatingly. In our proposed algorithm, we utilize the optimal multicast beamforming structure to obtain the BS beamformers efficiently. Furthermore, we reformulate the challenging RIS multicast subproblem and employ a first-order projected subgradient algorithm (PSA) to solve it, which yields closed-form updates. Simulation results show the efficacy of our proposed algorithm in performance and computational cost compared to other alternative methods.
Inverse scattering problems are inherently challenging, given the fact they are ill-posed and nonlinear. This paper presents a powerful deep learning-based approach that relies on generative adversarial networks to accurately and efficiently reconstruct randomly-shaped two-dimensional dielectric objects from amplitudes of multi-frequency scattered electric fields. An adversarial autoencoder (AAE) is trained to learn to generate the scatterer's geometry from a lower-dimensional latent representation constrained to adhere to the Gaussian distribution. A cohesive inverse neural network (INN) framework is set up comprising a sequence of appropriately designed dense layers, the already-trained generator as well as a separately trained forward neural network. The images reconstructed at the output of the inverse network are validated through comparison with outputs from the forward neural network, addressing the non-uniqueness challenge inherent to electromagnetic (EM) imaging problems. The trained INN demonstrates an enhanced robustness, evidenced by a mean binary cross-entropy (BCE) loss of $0.13$ and a structure similarity index (SSI) of $0.90$. The study not only demonstrates a significant reduction in computational load, but also marks a substantial improvement over traditional objective-function-based methods. It contributes both to the fields of machine learning and EM imaging by offering a real-time quantitative imaging approach. The results obtained with the simulated data, for both training and testing, yield promising results and may open new avenues for radio-frequency inverse imaging.
This paper explores Large Batch Training techniques using layer-wise adaptive scaling ratio (LARS) across diverse settings, uncovering insights. LARS algorithms with warm-up tend to be trapped in sharp minimizers early on due to redundant ratio scaling. Additionally, a fixed steep decline in the latter phase restricts deep neural networks from effectively navigating early-phase sharp minimizers. Building on these findings, we propose Time Varying LARS (TVLARS), a novel algorithm that replaces warm-up with a configurable sigmoid-like function for robust training in the initial phase. TVLARS promotes gradient exploration early on, surpassing sharp optimizers and gradually transitioning to LARS for robustness in later phases. Extensive experiments demonstrate that TVLARS consistently outperforms LARS and LAMB in most cases, with up to 2\% improvement in classification scenarios. Notably, in all self-supervised learning cases, TVLARS dominates LARS and LAMB with performance improvements of up to 10\%.
Background: Pose estimation of rigid objects is a practical challenge in optical metrology and computer vision. This paper presents a novel stochastic-geometrical modeling framework for object pose estimation based on observing multiple feature points. Methods: This framework utilizes mixture models for feature point densities in object space and for interpreting real measurements. Advantages are the avoidance to resolve individual feature correspondences and to incorporate correct stochastic dependencies in multi-view applications. First, the general modeling framework is presented, second, a general algorithm for pose estimation is derived, and third, two example models (camera and lateration setup) are presented. Results: Numerical experiments show the effectiveness of this modeling and general algorithm by presenting four simulation scenarios for three observation systems, including the dependence on measurement resolution, object deformations and measurement noise. Probabilistic modeling utilizing mixture models shows the potential for accurate and robust pose estimations while avoiding the correspondence problem.
This paper presents a novel wireless image transmission paradigm that can exploit feedback from the receiver, called DeepJSCC-ViT-f. We consider a block feedback channel model, where the transmitter receives noiseless/noisy channel output feedback after each block. The proposed scheme employs a single encoder to facilitate transmission over multiple blocks, refining the receiver's estimation at each block. Specifically, the unified encoder of DeepJSCC-ViT-f can leverage the semantic information from the source image, and acquire channel state information and the decoder's current belief about the source image from the feedback signal to generate coded symbols at each block. Numerical experiments show that our DeepJSCC-ViT-f scheme achieves state-of-the-art transmission performance with robustness to noise in the feedback link. Additionally, DeepJSCC-ViT-f can adapt to the channel condition directly through feedback without the need for separate channel estimation. We further extend the scope of the DeepJSCC-ViT-f approach to include the broadcast channel, which enables the transmitter to generate broadcast codes in accordance with signal semantics and channel feedback from individual receivers.
Imitation Learning (IL) is a promising paradigm for teaching robots to perform novel tasks using demonstrations. Most existing approaches for IL utilize neural networks (NN), however, these methods suffer from several well-known limitations: they 1) require large amounts of training data, 2) are hard to interpret, and 3) are hard to repair and adapt. There is an emerging interest in programmatic imitation learning (PIL), which offers significant promise in addressing the above limitations. In PIL, the learned policy is represented in a programming language, making it amenable to interpretation and repair. However, state-of-the-art PIL algorithms assume access to action labels and struggle to learn from noisy real-world demonstrations. In this paper, we propose PLUNDER, a novel PIL algorithm that integrates a probabilistic program synthesizer in an iterative Expectation-Maximization (EM) framework to address these shortcomings. Unlike existing PIL approaches, PLUNDER synthesizes probabilistic programmatic policies that are particularly well-suited for modeling the uncertainties inherent in real-world demonstrations. Our approach leverages an EM loop to simultaneously infer the missing action labels and the most likely probabilistic policy. We benchmark PLUNDER against several established IL techniques, and demonstrate its superiority across five challenging imitation learning tasks under noise. PLUNDER policies achieve 95% accuracy in matching the given demonstrations, outperforming the next best baseline by 19%. Additionally, policies generated by PLUNDER successfully complete the tasks 17% more frequently than the nearest baseline.
This paper proposes a stochastic proximal point method to solve a stochastic convex composite optimization problem. High probability results in stochastic optimization typically hinge on restrictive assumptions on the stochastic gradient noise, for example, sub-Gaussian distributions. Assuming only weak conditions such as bounded variance of the stochastic gradient, this paper establishes a low sample complexity to obtain a high probability guarantee on the convergence of the proposed method. Additionally, a notable aspect of this work is the development of a subroutine to solve the proximal subproblem, which also serves as a novel technique for variance reduction.
This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.