亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-Label Text Classification (MLTC) is a practical yet challenging task that involves assigning multiple non-exclusive labels to each document. Previous studies primarily focus on capturing label correlations to assist label prediction by introducing special labeling schemes, designing specific model structures, or adding auxiliary tasks. Recently, the $k$ Nearest Neighbor ($k$NN) framework has shown promise by retrieving labeled samples as references to mine label co-occurrence information in the embedding space. However, two critical biases, namely embedding alignment bias and confidence estimation bias, are often overlooked, adversely affecting prediction performance. In this paper, we introduce a DEbiased Nearest Neighbors (DENN) framework for MLTC, specifically designed to mitigate these biases. To address embedding alignment bias, we propose a debiased contrastive learning strategy, enhancing neighbor consistency on label co-occurrence. For confidence estimation bias, we present a debiased confidence estimation strategy, improving the adaptive combination of predictions from $k$NN and inductive binary classifications. Extensive experiments conducted on four public benchmark datasets (i.e., AAPD, RCV1-V2, Amazon-531, and EUR-LEX57K) showcase the effectiveness of our proposed method. Besides, our method does not introduce any extra parameters.

相關內容

Prompt tuning for vision-language models such as CLIP involves optimizing the text prompts used to generate image-text pairs for specific downstream tasks. While hand-crafted or template-based prompts are generally applicable to a wider range of unseen classes, they tend to perform poorly in downstream tasks (i.e., seen classes). Learnable soft prompts, on the other hand, often perform well in downstream tasks but lack generalizability. Additionally, prior research has predominantly concentrated on the textual modality, with very few studies attempting to explore the prompt's generalization potential from the visual modality. Keeping these limitations in mind, we investigate how to prompt tuning to obtain both a competitive downstream performance and generalization. The study shows that by treating soft and hand-crafted prompts as dual views of the textual modality, and maximizing their mutual information, we can better ensemble task-specific and general semantic information. Moreover, to generate more expressive prompts, the study introduces a class-wise augmentation from the visual modality, resulting in significant robustness to a wider range of unseen classes. Extensive evaluations on several benchmarks report that the proposed approach achieves competitive results in terms of both task-specific performance and general abilities.

We propose an Autoregressive (AR) Moving-average (MA) attention structure that can adapt to various linear attention mechanisms, enhancing their ability to capture long-range and local temporal patterns in time series. In this paper, we first demonstrate that, for the time series forecasting (TSF) task, the previously overlooked decoder-only autoregressive Transformer model can achieve results comparable to the best baselines when appropriate tokenization and training methods are applied. Moreover, inspired by the ARMA model from statistics and recent advances in linear attention, we introduce the full ARMA structure into existing autoregressive attention mechanisms. By using an indirect MA weight generation method, we incorporate the MA term while maintaining the time complexity and parameter size of the underlying efficient attention models. We further explore how indirect parameter generation can produce implicit MA weights that align with the modeling requirements for local temporal impacts. Experimental results show that incorporating the ARMA structure consistently improves the performance of various AR attentions on TSF tasks, achieving state-of-the-art results.

Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.

Unsupervised Domain Adaptation (UDA) is crucial for reducing the need for extensive manual data annotation when training deep networks on point cloud data. A significant challenge of UDA lies in effectively bridging the domain gap. To tackle this challenge, we propose \textbf{C}urvature \textbf{D}iversity-Driven \textbf{N}uclear-Norm Wasserstein \textbf{D}omain Alignment (CDND). Our approach first introduces a \textit{\textbf{Curv}ature Diversity-driven Deformation \textbf{Rec}onstruction (CurvRec)} task, which effectively mitigates the gap between the source and target domains by enabling the model to extract salient features from semantically rich regions of a given point cloud. We then propose \textit{\textbf{D}eformation-based \textbf{N}uclear-norm \textbf{W}asserstein \textbf{D}iscrepancy (D-NWD)}, which applies the Nuclear-norm Wasserstein Discrepancy to both \textit{deformed and original} data samples to align the source and target domains. Furthermore, we contribute a theoretical justification for the effectiveness of D-NWD in distribution alignment and demonstrate that it is \textit{generic} enough to be applied to \textbf{any} deformations. To validate our method, we conduct extensive experiments on two public domain adaptation datasets for point cloud classification and segmentation tasks. Empirical experiment results show that our CDND achieves state-of-the-art performance by a noticeable margin over existing approaches.

This work presents RNAdiffusion, a latent diffusion model for generating and optimizing discrete RNA sequences of variable lengths. RNA is a key intermediary between DNA and protein, exhibiting high sequence diversity and complex three-dimensional structures to support a wide range of functions. We utilize pretrained BERT-type models to encode raw RNA sequences into token-level, biologically meaningful representations. A Query Transformer is employed to compress such representations into a set of fixed-length latent vectors, with an autoregressive decoder trained to reconstruct RNA sequences from these latent variables. We then develop a continuous diffusion model within this latent space. To enable optimization, we integrate the gradients of reward models--surrogates for RNA functional properties--into the backward diffusion process, thereby generating RNAs with high reward scores. Empirical results confirm that RNAdiffusion generates non-coding RNAs that align with natural distributions across various biological metrics. Further, we fine-tune the diffusion model on mRNA 5' untranslated regions (5'-UTRs) and optimize sequences for high translation efficiencies. Our guided diffusion model effectively generates diverse 5'-UTRs with high Mean Ribosome Loading (MRL) and Translation Efficiency (TE), outperforming baselines in balancing rewards and structural stability trade-off. Our findings hold potential for advancing RNA sequence-function research and therapeutic RNA design.

Item Response Theory (IRT) is a powerful statistical approach for evaluating test items and determining test taker abilities through response analysis. An IRT model that better fits the data leads to more accurate latent trait estimates. In this study, we present a new model for multiple choice data, the monotone multiple choice (MMC) model, which we fit using autoencoders. Using both simulated scenarios and real data from the Swedish Scholastic Aptitude Test, we demonstrate empirically that the MMC model outperforms the traditional nominal response IRT model in terms of fit. Furthermore, we illustrate how the latent trait scale from any fitted IRT model can be transformed into a ratio scale, aiding in score interpretation and making it easier to compare different types of IRT models. We refer to these new scales as bit scales. Bit scales are especially useful for models for which minimal or no assumptions are made for the latent trait scale distributions, such as for the autoencoder fitted models in this study.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司