亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In real-world optimisation, it is common to face several sub-problems interacting and forming the main problem. There is an inter-dependency between the sub-problems, making it impossible to solve such a problem by focusing on only one component. The traveling thief problem~(TTP) belongs to this category and is formed by the integration of the traveling salesperson problem~(TSP) and the knapsack problem~(KP). In this paper, we investigate the inter-dependency of the TSP and the KP by means of quality diversity~(QD) approaches. QD algorithms provide a powerful tool not only to obtain high-quality solutions but also to illustrate the distribution of high-performing solutions in the behavioural space. We introduce a MAP-Elite based evolutionary algorithm using well-known TSP and KP search operators, taking the TSP and KP score as behavioural descriptor. Afterwards, we conduct comprehensive experimental studies that show the usefulness of using the QD approach applied to the TTP. First, we provide insights regarding high-quality TTP solutions in the TSP/KP behavioural space. Afterwards, we show that better solutions for the TTP can be obtained by using our QD approach and show that it can improve the best-known solution for a wide range of TTP instances used for benchmarking in the literature.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 算法與數據結構 ·
2022 年 2 月 21 日

The Analyst's Traveling Salesman Problem asks for conditions under which a (finite or infinite) subset of $\mathbb{R}^N$ is contained on a curve of finite length. We show that for finite sets, the algorithm constructed by Schul (2007)and Badger-Naples-Vellis (2019) that solves the Analyst's Traveling Salesman Problem has polynomial time complexity and we determine the sharp exponent.

The scope of this paper is the analysis and approximation of an optimal control problem related to the Allen-Cahn equation. A tracking functional is minimized subject to the Allen-Cahn equation using distributed controls that satisfy point-wise control constraints. First and second order necessary and sufficient conditions are proved. The lowest order discontinuous Galerkin - in time - scheme is considered for the approximation of the control to state and adjoint state mappings. Under a suitable restriction on maximum size of the temporal and spatial discretization parameters $k$, $h$ respectively in terms of the parameter $\epsilon$ that describes the thickness of the interface layer, a-priori estimates are proved with constants depending polynomially upon $1/ \epsilon$. Unlike to previous works for the uncontrolled Allen-Cahn problem our approach does not rely on a construction of an approximation of the spectral estimate, and as a consequence our estimates are valid under low regularity assumptions imposed by the optimal control setting. These estimates are also valid in cases where the solution and its discrete approximation do not satisfy uniform space-time bounds independent of $\epsilon$. These estimates and a suitable localization technique, via the second order condition (see \cite{Arada-Casas-Troltzsch_2002,Casas-Mateos-Troltzsch_2005,Casas-Raymond_2006,Casas-Mateos-Raymond_2007}), allows to prove error estimates for the difference between local optimal controls and their discrete approximation as well as between the associated state and adjoint state variables and their discrete approximations

Policy gradient (PG) methods are popular reinforcement learning (RL) methods where a baseline is often applied to reduce the variance of gradient estimates. In multi-agent RL (MARL), although the PG theorem can be naturally extended, the effectiveness of multi-agent PG (MAPG) methods degrades as the variance of gradient estimates increases rapidly with the number of agents. In this paper, we offer a rigorous analysis of MAPG methods by, firstly, quantifying the contributions of the number of agents and agents' explorations to the variance of MAPG estimators. Based on this analysis, we derive the optimal baseline (OB) that achieves the minimal variance. In comparison to the OB, we measure the excess variance of existing MARL algorithms such as vanilla MAPG and COMA. Considering using deep neural networks, we also propose a surrogate version of OB, which can be seamlessly plugged into any existing PG methods in MARL. On benchmarks of Multi-Agent MuJoCo and StarCraft challenges, our OB technique effectively stabilises training and improves the performance of multi-agent PPO and COMA algorithms by a significant margin.

Despite their overwhelming capacity to overfit, deep neural networks trained by specific optimization algorithms tend to generalize well to unseen data. Recently, researchers explained it by investigating the implicit regularization effect of optimization algorithms. A remarkable progress is the work (Lyu&Li, 2019), which proves gradient descent (GD) maximizes the margin of homogeneous deep neural networks. Except GD, adaptive algorithms such as AdaGrad, RMSProp and Adam are popular owing to their rapid training process. However, theoretical guarantee for the generalization of adaptive optimization algorithms is still lacking. In this paper, we study the implicit regularization of adaptive optimization algorithms when they are optimizing the logistic loss on homogeneous deep neural networks. We prove that adaptive algorithms that adopt exponential moving average strategy in conditioner (such as Adam and RMSProp) can maximize the margin of the neural network, while AdaGrad that directly sums historical squared gradients in conditioner can not. It indicates superiority on generalization of exponential moving average strategy in the design of the conditioner. Technically, we provide a unified framework to analyze convergent direction of adaptive optimization algorithms by constructing novel adaptive gradient flow and surrogate margin. Our experiments can well support the theoretical findings on convergent direction of adaptive optimization algorithms.

Interactive recommendation that models the explicit interactions between users and the recommender system has attracted a lot of research attentions in recent years. Most previous interactive recommendation systems only focus on optimizing recommendation accuracy while overlooking other important aspects of recommendation quality, such as the diversity of recommendation results. In this paper, we propose a novel recommendation model, named \underline{D}iversity-promoting \underline{D}eep \underline{R}einforcement \underline{L}earning (D$^2$RL), which encourages the diversity of recommendation results in interaction recommendations. More specifically, we adopt a Determinantal Point Process (DPP) model to generate diverse, while relevant item recommendations. A personalized DPP kernel matrix is maintained for each user, which is constructed from two parts: a fixed similarity matrix capturing item-item similarity, and the relevance of items dynamically learnt through an actor-critic reinforcement learning framework. We performed extensive offline experiments as well as simulated online experiments with real world datasets to demonstrate the effectiveness of the proposed model.

Although recent neural conversation models have shown great potential, they often generate bland and generic responses. While various approaches have been explored to diversify the output of the conversation model, the improvement often comes at the cost of decreased relevance. In this paper, we propose a method to jointly optimize diversity and relevance that essentially fuses the latent space of a sequence-to-sequence model and that of an autoencoder model by leveraging novel regularization terms. As a result, our approach induces a latent space in which the distance and direction from the predicted response vector roughly match the relevance and diversity, respectively. This property also lends itself well to an intuitive visualization of the latent space. Both automatic and human evaluation results demonstrate that the proposed approach brings significant improvement compared to strong baselines in both diversity and relevance.

We present a generalization of the Cauchy/Lorentzian, Geman-McClure, Welsch/Leclerc, generalized Charbonnier, Charbonnier/pseudo-Huber/L1-L2, and L2 loss functions. By introducing robustness as a continous parameter, our loss function allows algorithms built around robust loss minimization to be generalized, which improves performance on basic vision tasks such as registration and clustering. Interpreting our loss as the negative log of a univariate density yields a general probability distribution that includes normal and Cauchy distributions as special cases. This probabilistic interpretation enables the training of neural networks in which the robustness of the loss automatically adapts itself during training, which improves performance on learning-based tasks such as generative image synthesis and unsupervised monocular depth estimation, without requiring any manual parameter tuning.

While Generative Adversarial Networks (GANs) have empirically produced impressive results on learning complex real-world distributions, recent work has shown that they suffer from lack of diversity or mode collapse. The theoretical work of Arora et al.~\cite{AroraGeLiMaZh17} suggests a dilemma about GANs' statistical properties: powerful discriminators cause overfitting, whereas weak discriminators cannot detect mode collapse. In contrast, we show in this paper that GANs can in principle learn distributions in Wasserstein distance (or KL-divergence in many cases) with polynomial sample complexity, if the discriminator class has strong distinguishing power against the particular generator class (instead of against all possible generators). For various generator classes such as mixture of Gaussians, exponential families, and invertible neural networks generators, we design corresponding discriminators (which are often neural nets of specific architectures) such that the Integral Probability Metric (IPM) induced by the discriminators can provably approximate the Wasserstein distance and/or KL-divergence. This implies that if the training is successful, then the learned distribution is close to the true distribution in Wasserstein distance or KL divergence, and thus cannot drop modes. Our preliminary experiments show that on synthetic datasets the test IPM is well correlated with KL divergence, indicating that the lack of diversity may be caused by the sub-optimality in optimization instead of statistical inefficiency.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司