亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gyroscopic alignment of a fluid occurs when flow structures align with the rotation axis. This often gives rise to highly spatially anisotropic columnar structures that in combination with complex domain boundaries pose challenges for efficient numerical discretizations and computations. We define gyroscopic polynomials to be three-dimensional polynomials expressed in a coordinate system that conforms to rotational alignment. We remap the original domain with radius-dependent boundaries onto a right cylindrical or annular domain to create the computational domain in this coordinate system. We find the volume element expressed in gyroscopic coordinates leads naturally to a hierarchy of orthonormal bases. We build the bases out of Jacobi polynomials in the vertical and generalized Jacobi polynomials in the radial. Because these coordinates explicitly conform to flow structures found in rapidly rotating systems the bases represent fields with a relatively small number of modes. We develop the operator structure for one-dimensional semi-classical orthogonal polynomials as a building block for differential operators in the full three-dimensional cylindrical and annular domains. The differential operators of generalized Jacobi polynomials generate a sparse linear system for discretization of differential operators acting on the gyroscopic bases. This enables efficient simulation of systems with strong gyroscopic alignment.

相關內容

Assistive robotic manipulators are becoming increasingly important for people with disabilities. Teleoperating the manipulator in mundane tasks is part of their daily lives. Instead of steering the robot through all actions, applying self-recorded motion macros could greatly facilitate repetitive tasks. Dynamic Movement Primitives (DMP) are a powerful method for skill learning via teleoperation. For this use case, however, they need simple heuristics to specify where to start, stop, and parameterize a skill without a background in computer science and academic sensor setups for autonomous perception. To achieve this goal, this paper provides the concept of local, global, and hybrid skills that form a modular basis for composing single-handed tasks of daily living. These skills are specified implicitly and can easily be programmed by users themselves, requiring only their basic robotic manipulator. The paper contributes all details for robot-agnostic implementations. Experiments validate the developed methods for exemplary tasks, such as scratching an itchy spot, sorting objects on a desk, and feeding a piggy bank with coins. The paper is accompanied by an open-source implementation at //github.com/fzi-forschungszentrum-informatik/ArNe

The paper considers the distribution of a general linear combination of central and non-central chi-square random variables by exploring the branch cut regions that appear in the standard Laplace inversion process. Due to the original interest from the directional statistics, the focus of this paper is on the density function of such distributions and not on their cumulative distribution function. In fact, our results confirm that the latter is a special case of the former. Our approach provides new insight by generating alternative characterizations of the probability density function in terms of a finite number of feasible univariate integrals. In particular, the central cases seem to allow an interesting representation in terms of the branch cuts, while general degrees of freedom and non-centrality can be easily adopted using recursive differentiation. Numerical results confirm that the proposed approach works well while more transparency and therefore easier control in the accuracy is ensured.

Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.

Many problems in robotics, such as estimating the state from noisy sensor data or aligning two LiDAR point clouds, can be posed and solved as least-squares problems. Unfortunately, vanilla nonminimal solvers for least-squares problems are notoriously sensitive to outliers. As such, various robust loss functions have been proposed to reduce the sensitivity to outliers. Examples of loss functions include pseudo-Huber, Cauchy, and Geman-McClure. Recently, these loss functions have been generalized into a single loss function that enables the best loss function to be found adaptively based on the distribution of the residuals. However, even with the generalized robust loss function, most nonminimal solvers can only be solved locally given a prior state estimate due to the nonconvexity of the problem. The first contribution of this paper is to combine graduated nonconvexity (GNC) with the generalized robust loss function to solve least-squares problems without a prior state estimate and without the need to specify a loss function. Moreover, existing loss functions, including the generalized loss function, are based on Gaussian-like distribution. However, residuals are often defined as the squared norm of a multivariate error and distributed in a Chi-like fashion. The second contribution of this paper is to apply a norm-aware adaptive robust loss function within a GNC framework. This leads to additional robustness when compared with state-of-the-art methods. Simulations and experiments demonstrate that the proposed approach is more robust and yields faster convergence times compared to other GNC formulations.

Quantum dynamics can be simulated on a quantum computer by exponentiating elementary terms from the Hamiltonian in a sequential manner. However, such an implementation of Trotter steps has gate complexity depending on the total Hamiltonian term number, comparing unfavorably to algorithms using more advanced techniques. We develop methods to perform faster Trotter steps with complexity sublinear in the number of terms. We achieve this for a class of Hamiltonians whose interaction strength decays with distance according to power law. Our methods include one based on a recursive block encoding and one based on an average-cost simulation, overcoming the normalization-factor barrier of these advanced quantum simulation techniques. We also realize faster Trotter steps when certain blocks of Hamiltonian coefficients have low rank. Combining with a tighter error analysis, we show that it suffices to use $\left(\eta^{1/3}n^{1/3}+\frac{n^{2/3}}{\eta^{2/3}}\right)n^{1+o(1)}$ gates to simulate uniform electron gas with $n$ spin orbitals and $\eta$ electrons in second quantization in real space, asymptotically improving over the best previous work. We obtain an analogous result when the external potential of nuclei is introduced under the Born-Oppenheimer approximation. We prove a circuit lower bound when the Hamiltonian coefficients take a continuum range of values, showing that generic $n$-qubit $2$-local Hamiltonians with commuting terms require at least $\Omega(n^2)$ gates to evolve with accuracy $\epsilon=\Omega(1/poly(n))$ for time $t=\Omega(\epsilon)$. Our proof is based on a gate-efficient reduction from the approximate synthesis of diagonal unitaries within the Hamming weight-$2$ subspace, which may be of independent interest. Our result thus suggests the use of Hamiltonian structural properties as both necessary and sufficient to implement Trotter steps with lower gate complexity.

This article presents a novel approach to identifying and classifying intersections for semantic and topological mapping. More specifically, the proposed novel approach has the merit of generating a semantically meaningful map containing intersections, pathways, dead ends, and pathways leading to unexplored frontiers. Furthermore, the resulting semantic map can be used to generate a sparse topological map representation, that can be utilized by robots for global navigation. The proposed solution also introduces a built-in filtering to handle noises in the environment, to remove openings in the map that the robot cannot pass, and to remove small objects to optimize and simplify the overall mapping results. The efficacy of the proposed semantic and topological mapping method is demonstrated over a map of an indoor structured environment that is built from experimental data. The proposed framework, when compared with similar state-of-the-art topological mapping solutions, is able to produce a map with up to 89% fewer nodes than the next best solution.

Limited computational budgets often prevent transformers from being used in production and from having their high accuracy utilized. A knowledge distillation approach addresses the computational efficiency by self-distilling BERT into a smaller transformer representation having fewer layers and smaller internal embedding. However, the performance of these models drops as we reduce the number of layers, notably in advanced NLP tasks such as span question answering. In addition, a separate model must be trained for each inference scenario with its distinct computational budget. Dynamic-TinyBERT tackles both limitations by partially implementing the Length Adaptive Transformer (LAT) technique onto TinyBERT, achieving x3 speedup over BERT-base with minimal accuracy loss. In this work, we expand the Dynamic-TinyBERT approach to generate a much more highly efficient model. We use MiniLM distillation jointly with the LAT method, and we further enhance the efficiency by applying low-bit quantization. Our quantized length-adaptive MiniLM model (QuaLA-MiniLM) is trained only once, dynamically fits any inference scenario, and achieves an accuracy-efficiency trade-off superior to any other efficient approaches per any computational budget on the SQuAD1.1 dataset (up to x8.8 speedup with <1% accuracy loss). The code to reproduce this work is publicly available on Github.

To make indoor industrial cell-free massive multiple-input multiple-output (CF-mMIMO) networks free from wired fronthaul, this paper studies a multicarrier-division duplex (MDD)-enabled two-tier terahertz (THz) fronthaul scheme. More specifically, two layers of fronthaul links rely on the mutually orthogonal subcarreir sets in the same THz band, while access links are implemented over sub-6G band. The proposed scheme leads to a complicated mixed-integer nonconvex optimization problem incorporating access point (AP) clustering, device selection, the assignment of subcarrier sets between two fronthaul links and the resource allocation at both the central processing unit (CPU) and APs. In order to address the formulated problem, we first resort to the low-complexity but efficient heuristic methods thereby relaxing the binary variables. Then, the overall end-to-end rate is obtained by iteratively optimizing the assignment of subcarrier sets and the number of AP clusters. Furthermore, an advanced MDD frame structure consisting of three parallel data streams is tailored for the proposed scheme. Simulation results demonstrate the effectiveness of the proposed dynamic AP clustering approach in dealing with the varying sizes of networks. Moreover, benefiting from the well-designed frame structure, MDD is capable of outperforming TDD in the two-tier fronthaul networks. Additionally, the effect of the THz bandwidth on system performance is analyzed, and it is shown that with sufficient frequency resources, our proposed two-tier fully-wireless fronthaul scheme can achieve a comparable performance to the fiber-optic based systems. Finally, the superiority of the proposed MDD-enabled fronthaul scheme is verified in a practical scenario with realistic ray-tracing simulations.

We consider $t$-Lee-error-correcting codes of length $n$ over the residue ring $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$ and determine upper and lower bounds on the number of $t$-Lee-error-correcting codes. We use two different methods, namely estimating isolated nodes on bipartite graphs and the graph container method. The former gives density results for codes of fixed size and the latter for any size. This confirms some recent density results for linear Lee metric codes and provides new density results for nonlinear codes. To apply a variant of the graph container algorithm we also investigate some geometrical properties of the balls in the Lee metric.

Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.

北京阿比特科技有限公司