亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

K-Nearest Neighbor Neural Machine Translation (kNN-MT) successfully incorporates external corpus by retrieving word-level representations at test time. Generally, kNN-MT borrows the off-the-shelf context representation in the translation task, e.g., the output of the last decoder layer, as the query vector of the retrieval task. In this work, we highlight that coupling the representations of these two tasks is sub-optimal for fine-grained retrieval. To alleviate it, we leverage supervised contrastive learning to learn the distinctive retrieval representation derived from the original context representation. We also propose a fast and effective approach to constructing hard negative samples. Experimental results on five domains show that our approach improves the retrieval accuracy and BLEU score compared to vanilla kNN-MT.

相關內容

機器翻譯(yi)(Machine Translation)涵(han)蓋計算(suan)語(yu)(yu)言學(xue)(xue)和(he)語(yu)(yu)言工程(cheng)的(de)所有分支(zhi),包含多(duo)語(yu)(yu)言方面(mian)。特色(se)論文(wen)涵(han)蓋理論,描述或計算(suan)方面(mian)的(de)任何下(xia)列主題:雙語(yu)(yu)和(he)多(duo)語(yu)(yu)語(yu)(yu)料庫的(de)編寫和(he)使(shi)用,計算(suan)機輔助語(yu)(yu)言教學(xue)(xue),非羅馬字符集的(de)計算(suan)含義,連接主義翻譯(yi)方法,對比語(yu)(yu)言學(xue)(xue)等(deng)。 官(guan)網地(di)址:

The EPC GEN 2 communication protocol for Ultra-high frequency Radio Frequency Identification (RFID) has offered a promising avenue for advancing the intelligence of transportation infrastructure. With the capability of linking vehicles to RFID readers to crowdsource information from RFID tags on road infrastructures, the RF-enhanced road infrastructure (REI) can potentially transform data acquisition for urban transportation. Despite its potential, the broader adoption of RFID technologies in building intelligent roads has been limited by a deficiency in understanding how the GEN 2 protocol impacts system performance under different transportation settings. This paper fills this knowledge gap by presenting the system architecture and detailing the design challenges associated with REI. Comprehensive real-world experiments are conducted to assess REI's effectiveness across various urban contexts. The results yield crucial insights into the optimal design of on-vehicle RFID readers and on-road RFID tags, considering the constraints imposed by vehicle dynamics, road geometries, and tag placements. With the optimized designs of encoding schemes for reader-tag communication and on-vehicle antennas, REI is able to fulfill the requirements of traffic sign inventory management and environmental monitoring while falling short of catering to the demand for high-speed navigation. In particular, the Miller 2 encoding scheme strikes the best balance between reading performance (e.g., throughput) and noise tolerance for the multipath effect. Additionally, we show that the on-vehicle antenna should be oriented to maximize the available time for reading on-road tags, although it may reduce the received power by the tags in the forward link.

The Collaborative Research Cycle (CRC) is a National Institute of Standards and Technology (NIST) benchmarking program intended to strengthen understanding of tabular data deidentification technologies. Deidentification algorithms are vulnerable to the same bias and privacy issues that impact other data analytics and machine learning applications, and can even amplify those issues by contaminating downstream applications. This paper summarizes four CRC contributions: theoretical work on the relationship between diverse populations and challenges for equitable deidentification; public benchmark data focused on diverse populations and challenging features; a comprehensive open source suite of evaluation metrology for deidentified datasets; and an archive of more than 450 deidentified data samples from a broad range of techniques. The initial set of evaluation results demonstrate the value of these tools for investigations in this field.

Weight-sharing Neural Architecture Search (WS-NAS) provides an efficient mechanism for developing end-to-end deep recommender models. However, in complex search spaces, distinguishing between superior and inferior architectures (or paths) is challenging. This challenge is compounded by the limited coverage of the supernet and the co-adaptation of subnet weights, which restricts the exploration and exploitation capabilities inherent to weight-sharing mechanisms. To address these challenges, we introduce Farthest Greedy Path Sampling (FGPS), a new path sampling strategy that balances path quality and diversity. FGPS enhances path diversity to facilitate more comprehensive supernet exploration, while emphasizing path quality to ensure the effective identification and utilization of promising architectures. By incorporating FGPS into a Two-shot NAS (TS-NAS) framework, we derive high-performance architectures. Evaluations on three Click-Through Rate (CTR) prediction benchmarks demonstrate that our approach consistently achieves superior results, outperforming both manually designed and most NAS-based models.

Multilingual Neural Machine Translation (MNMT) facilitates knowledge sharing but often suffers from poor zero-shot (ZS) translation qualities. While prior work has explored the causes of overall low ZS performance, our work introduces a fresh perspective: the presence of high variations in ZS performance. This suggests that MNMT does not uniformly exhibit poor ZS capability; instead, certain translation directions yield reasonable results. Through systematic experimentation involving 1,560 language directions spanning 40 languages, we identify three key factors contributing to high variations in ZS NMT performance: 1) target side translation capability 2) vocabulary overlap 3) linguistic properties. Our findings highlight that the target side translation quality is the most influential factor, with vocabulary overlap consistently impacting ZS performance. Additionally, linguistic properties, such as language family and writing system, play a role, particularly with smaller models. Furthermore, we suggest that the off-target issue is a symptom of inadequate ZS performance, emphasizing that zero-shot translation challenges extend beyond addressing the off-target problem. We release the data and models serving as a benchmark to study zero-shot for future research at //github.com/Smu-Tan/ZS-NMT-Variations

Optimal plans in Constrained Partially Observable Markov Decision Processes (CPOMDPs) maximize reward objectives while satisfying hard cost constraints, generalizing safe planning under state and transition uncertainty. Unfortunately, online CPOMDP planning is extremely difficult in large or continuous problem domains. In many large robotic domains, hierarchical decomposition can simplify planning by using tools for low-level control given high-level action primitives (options). We introduce Constrained Options Belief Tree Search (COBeTS) to leverage this hierarchy and scale online search-based CPOMDP planning to large robotic problems. We show that if primitive option controllers are defined to satisfy assigned constraint budgets, then COBeTS will satisfy constraints anytime. Otherwise, COBeTS will guide the search towards a safe sequence of option primitives, and hierarchical monitoring can be used to achieve runtime safety. We demonstrate COBeTS in several safety-critical, constrained partially observable robotic domains, showing that it can plan successfully in continuous CPOMDPs while non-hierarchical baselines cannot.

To date, the comparison of Statistical Shape Models (SSMs) is often solely performance-based, carried out by means of simplistic metrics such as compactness, generalization, or specificity. Any similarities or differences between the actual shape spaces can neither be visualized nor quantified. In this paper, we present a new method to qualitatively compare two linear SSMs in dense correspondence by computing approximate intersection spaces and set-theoretic differences between the (hyper-ellipsoidal) allowable shape domains spanned by the models. To this end, we approximate the distribution of shapes lying in the intersection space using Markov chain Monte Carlo and subsequently apply Principal Component Analysis (PCA) to the posterior samples, eventually yielding a new SSM of the intersection space. We estimate differences between linear SSMs in a similar manner; here, however, the resulting spaces are no longer convex and we do not apply PCA but instead use the posterior samples for visualization. We showcase the proposed algorithm qualitatively by computing and analyzing intersection spaces and differences between publicly available face models, focusing on gender-specific male and female as well as identity and expression models. Our quantitative evaluation based on SSMs built from synthetic and real-world data sets provides detailed evidence that the introduced method is able to recover ground-truth intersection spaces and differences accurately.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

Graph Convolutional Network (GCN) has achieved extraordinary success in learning effective task-specific representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for a target object, which hinders both effectiveness and interpretability; (2) they often need to generate intermediate meta-path based dense graphs, which leads to high computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation first, followed by type-level aggregation. The novel architecture can automatically extract useful meta-paths for each object from all possible meta-paths (within a length limit), which brings good model interpretability. It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention. We provide theoretical analysis about the proposed ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on three real network datasets demonstrate the superiority of ie-HGCN over the state-of-the-art methods.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.

北京阿比特科技有限公司