亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The paper introduces a new meshfree pseudospectral method based on Gaussian radial basis functions (RBFs) collocation to solve fractional Poisson equations. Hypergeometric functions are used to represent the fractional Laplacian of Gaussian RBFs, enabling an efficient computation of stiffness matrix entries. Unlike existing RBF-based methods, our approach ensures a Toeplitz structure in the stiffness matrix with equally spaced RBF centers, enabling efficient matrix-vector multiplications using fast Fourier transforms. We conduct a comprehensive study on the shape parameter selection, addressing challenges related to ill-conditioning and numerical stability. The main contribution of our work includes rigorous stability analysis and error estimates of the Gaussian RBF collocation method, representing a first attempt at the rigorous analysis of RBF-based methods for fractional PDEs to the best of our knowledge. We conduct numerical experiments to validate our analysis and provide practical insights for implementation.

相關內容

In this paper, we design a new kind of high order inverse Lax-Wendroff (ILW) boundary treatment for solving hyperbolic conservation laws with finite difference method on a Cartesian mesh. This new ILW method decomposes the construction of ghost point values near inflow boundary into two steps: interpolation and extrapolation. At first, we impose values of some artificial auxiliary points through a polynomial interpolating the interior points near the boundary. Then, we will construct a Hermite extrapolation based on those auxiliary point values and the spatial derivatives at boundary obtained via the ILW procedure. This polynomial will give us the approximation to the ghost point value. By an appropriate selection of those artificial auxiliary points, high-order accuracy and stable results can be achieved. Moreover, theoretical analysis indicates that comparing with the original ILW method, especially for higher order accuracy, the new proposed one would require fewer terms using the relatively complicated ILW procedure and thus improve computational efficiency on the premise of maintaining accuracy and stability. We perform numerical experiments on several benchmarks, including one- and two-dimensional scalar equations and systems. The robustness and efficiency of the proposed scheme is numerically verified.

Deep neural networks used for reconstructing sparse-view CT data are typically trained by minimizing a pixel-wise mean-squared error or similar loss function over a set of training images. However, networks trained with such pixel-wise losses are prone to wipe out small, low-contrast features that are critical for screening and diagnosis. To remedy this issue, we introduce a novel training loss inspired by the model observer framework to enhance the detectability of weak signals in the reconstructions. We evaluate our approach on the reconstruction of synthetic sparse-view breast CT data, and demonstrate an improvement in signal detectability with the proposed loss.

In recent years, Scientific Machine Learning (SciML) methods for solving partial differential equations (PDEs) have gained increasing popularity. Within such a paradigm, Physics-Informed Neural Networks (PINNs) are novel deep learning frameworks for solving initial-boundary value problems involving nonlinear PDEs. Recently, PINNs have shown promising results in several application fields. Motivated by applications to gas filtration problems, here we present and evaluate a PINN-based approach to predict solutions to strongly degenerate parabolic problems with asymptotic structure of Laplacian type. To the best of our knowledge, this is one of the first papers demonstrating the efficacy of the PINN framework for solving such kind of problems. In particular, we estimate an appropriate approximation error for some test problems whose analytical solutions are fortunately known. The numerical experiments discussed include two and three-dimensional spatial domains, emphasizing the effectiveness of this approach in predicting accurate solutions.

This paper introduces HALLaR, a new first-order method for solving large-scale semidefinite programs (SDPs) with bounded domain. HALLaR is an inexact augmented Lagrangian (AL) method where the AL subproblems are solved by a novel hybrid low-rank (HLR) method. The recipe behind HLR is based on two key ingredients: 1) an adaptive inexact proximal point method with inner acceleration; 2) Frank-Wolfe steps to escape from spurious local stationary points. In contrast to the low-rank method of Burer and Monteiro, HALLaR finds a near-optimal solution (with provable complexity bounds) of SDP instances satisfying strong duality. Computational results comparing HALLaR to state-of-the-art solvers on several large SDP instances arising from maximum stable set, phase retrieval, and matrix completion show that the former finds higher accurate solutions in substantially less CPU time than the latter ones. For example, in less than 20 minutes, HALLaR can solve a maximum stable set SDP instance with dimension pair $(n,m)\approx (10^6,10^7)$ within $10^{-5}$ relative precision.

Mesh-based Graph Neural Networks (GNNs) have recently shown capabilities to simulate complex multiphysics problems with accelerated performance times. However, mesh-based GNNs require a large number of message-passing (MP) steps and suffer from over-smoothing for problems involving very fine mesh. In this work, we develop a multiscale mesh-based GNN framework mimicking a conventional iterative multigrid solver, coupled with adaptive mesh refinement (AMR), to mitigate challenges with conventional mesh-based GNNs. We use the framework to accelerate phase field (PF) fracture problems involving coupled partial differential equations with a near-singular operator due to near-zero modulus inside the crack. We define the initial graph representation using all mesh resolution levels. We perform a series of downsampling steps using Transformer MP GNNs to reach the coarsest graph followed by upsampling steps to reach the original graph. We use skip connectors from the generated embedding during coarsening to prevent over-smoothing. We use Transfer Learning (TL) to significantly reduce the size of training datasets needed to simulate different crack configurations and loading conditions. The trained framework showed accelerated simulation times, while maintaining high accuracy for all cases compared to physics-based PF fracture model. Finally, this work provides a new approach to accelerate a variety of mesh-based engineering multiphysics problems

We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at //github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.

This paper considers the problem of manifold functional multiple regression with functional response, time--varying scalar regressors, and functional error term displaying Long Range Dependence (LRD) in time. Specifically, the error term is given by a manifold multifractionally integrated functional time series (see, e.g., Ovalle--Mu\~noz \& Ruiz--Medina, 2024)). The manifold is defined by a connected and compact two--point homogeneous space. The functional regression parameters have support in the manifold. The Generalized Least--Squares (GLS) estimator of the vector functional regression parameter is computed, and its asymptotic properties are analyzed under a totally specified and misspecified model scenario. A multiscale residual correlation analysis in the simulation study undertaken illustrates the empirical distributional properties of the errors at different spherical resolution levels.

Karppa & Kaski (2019) proposed a novel ``broken" or ``opportunistic" matrix multiplication algorithm, based on a variant of Strassen's algorithm, and used this to develop new algorithms for Boolean matrix multiplication, among other tasks. Their algorithm can compute Boolean matrix multiplication in $O(n^{2.778})$ time. While asymptotically faster matrix multiplication algorithms exist, most such algorithms are infeasible for practical problems. We describe an alternative way to use the broken multiplication algorithm to approximately compute matrix multiplication, either for real-valued or Boolean matrices. In brief, instead of running multiple iterations of the broken algorithm on the original input matrix, we form a new larger matrix by sampling and run a single iteration of the broken algorithm on it. Asymptotically, our algorithm has runtime $O(n^{2.763})$, a slight improvement over the Karppa-Kaski algorithm. Since the goal is to obtain new practical matrix-multiplication algorithms, we also estimate the concrete runtime for our algorithm for some large-scale sample problems. It appears that for these parameters, further optimizations are still needed to make our algorithm competitive.

We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司