亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In online exploration systems where users with fixed preferences repeatedly arrive, it has recently been shown that O(1), i.e., bounded regret, can be achieved when the system is modeled as a linear contextual bandit. This result may be of interest for recommender systems, where the popularity of their items is often short-lived, as the exploration itself may be completed quickly before potential long-run non-stationarities come into play. However, in practice, exact knowledge of the linear model is difficult to justify. Furthermore, potential existence of unobservable covariates, uneven user arrival rates, interpretation of the necessary rank condition, and users opting out of private data tracking all need to be addressed for practical recommender system applications. In this work, we conduct a theoretical study to address all these issues while still achieving bounded regret. Aside from proof techniques, the key differentiating assumption we make here is the presence of effective Synthetic Control Methods (SCM), which are shown to be a practical relaxation of the exact linear model knowledge assumption. We verify our theoretical bounded regret result using a minimal simulation experiment.

相關內容

As physical layer security evolves to multi-user systems, multi-user interference (MUI) becomes an unavoidable issue. Recently, rate-splitting multiple access (RSMA) emerges as a powerful non-orthogonal transmission framework and interference management strategy with high spectral efficiency. Unlike most works fully treating MUI as noise, we take all users' secrecy rate requirements into consideration and propose an RSMA-based secure beamforming approach to maximize the weighted sum-rate (WSR), where MUI is partially decoded and partially treated as noise. User messages are split and encoded into common and private streams. Each user not only decodes the common stream and the intended private stream, but also tries to eavesdrop other users' private streams. A successive convex approximation (SCA)-based approach is proposed to maximize the instantaneous WSR under perfect channel state information at the transmitter (CSIT). We then propose a joint weighted minimum mean square error and SCA-based alternating optimization algorithm to maximize the weighted ergodic sum-rate under imperfect CSIT. Numerical results demonstrate RSMA achieves better WSR and is more robust to channel errors than conventional multi-user linear precoding technique while ensuring all users' security requirements. Besides, RSMA can satisfy all users' secrecy rate requirements without introducing WSR loss thanks to its powerful interference management capability.

Deep neural networks are increasingly utilized in various machine learning tasks. However, as these models grow in complexity, they often face calibration issues, despite enhanced prediction accuracy. Many studies have endeavored to improve calibration performance through data preprocessing, the use of specific loss functions, and training frameworks. Yet, investigations into calibration properties have been somewhat overlooked. Our study leverages the Neural Architecture Search (NAS) search space, offering an exhaustive model architecture space for thorough calibration properties exploration. We specifically create a model calibration dataset. This dataset evaluates 90 bin-based and 12 additional calibration measurements across 117,702 unique neural networks within the widely employed NATS-Bench search space. Our analysis aims to answer several longstanding questions in the field, using our proposed dataset: (i) Can model calibration be generalized across different tasks? (ii) Can robustness be used as a calibration measurement? (iii) How reliable are calibration metrics? (iv) Does a post-hoc calibration method affect all models uniformly? (v) How does calibration interact with accuracy? (vi) What is the impact of bin size on calibration measurement? (vii) Which architectural designs are beneficial for calibration? Additionally, our study bridges an existing gap by exploring calibration within NAS. By providing this dataset, we enable further research into NAS calibration. As far as we are aware, our research represents the first large-scale investigation into calibration properties and the premier study of calibration issues within NAS.

Recently, the ability of language models (LMs) has attracted increasing attention in visual cross-modality. In this paper, we further explore the generation capacity of LMs for sound event detection (SED), beyond the visual domain. Specifically, we propose an elegant method that aligns audio features and text features to accomplish sound event classification and temporal location. The framework consists of an acoustic encoder, a contrastive module that align the corresponding representations of the text and audio, and a decoupled language decoder that generates temporal and event sequences from the audio characteristic. Compared with conventional works that require complicated processing and barely utilize limited audio features, our model is more concise and comprehensive since language model directly leverage its semantic capabilities to generate the sequences. We investigate different decoupling modules to demonstrate the effectiveness for timestamps capture and event classification. Evaluation results show that the proposed method achieves accurate sequences of sound event detection.

Partial differential equations (PDEs) can describe many relevant phenomena in dynamical systems. In real-world applications, we commonly need to combine formal PDE models with (potentially noisy) observations. This is especially relevant in settings where we lack information about boundary or initial conditions, or where we need to identify unknown model parameters. In recent years, Physics-informed neural networks (PINNs) have become a popular tool for problems of this kind. In high-dimensional settings, however, PINNs often suffer from computational problems because they usually require dense collocation points over the entire computational domain. To address this problem, we present Physics-Informed Boundary Integral Networks (PIBI-Nets) as a data-driven approach for solving PDEs in one dimension less than the original problem space. PIBI-Nets only need collocation points at the computational domain boundary, while still achieving highly accurate results, and in several practical settings, they clearly outperform PINNs. Exploiting elementary properties of fundamental solutions of linear differential operators, we present a principled and simple way to handle point sources in inverse problems. We demonstrate the excellent performance of PIBI-Nets for the Laplace and Poisson equations, both on artificial data sets and within a real-world application concerning the reconstruction of groundwater flows.

We address the problem of aligning real-world 3D data of garments, which benefits many applications such as texture learning, physical parameter estimation, generative modeling of garments, etc. Existing extrinsic methods typically perform non-rigid iterative closest point and struggle to align details due to incorrect closest matches and rigidity constraints. While intrinsic methods based on functional maps can produce high-quality correspondences, they work under isometric assumptions and become unreliable for garment deformations which are highly non-isometric. To achieve wrinkle-level as well as texture-level alignment, we present a novel coarse-to-fine two-stage method that leverages intrinsic manifold properties with two neural deformation fields, in the 3D space and the intrinsic space, respectively. The coarse stage performs a 3D fitting, where we leverage intrinsic manifold properties to define a manifold deformation field. The coarse fitting then induces a functional map that produces an alignment of intrinsic embeddings. We further refine the intrinsic alignment with a second neural deformation field for higher accuracy. We evaluate our method with our captured garment dataset, GarmCap. The method achieves accurate wrinkle-level and texture-level alignment and works for difficult garment types such as long coats. Our project page is //jsnln.github.io/iccv2023_intrinsic/index.html.

The goal of community detection over graphs is to recover underlying labels/attributes of users (e.g., political affiliation) given the connectivity between users (represented by adjacency matrix of a graph). There has been significant recent progress on understanding the fundamental limits of community detection when the graph is generated from a stochastic block model (SBM). Specifically, sharp information theoretic limits and efficient algorithms have been obtained for SBMs as a function of $p$ and $q$, which represent the intra-community and inter-community connection probabilities. In this paper, we study the community detection problem while preserving the privacy of the individual connections (edges) between the vertices. Focusing on the notion of $(\epsilon, \delta)$-edge differential privacy (DP), we seek to understand the fundamental tradeoffs between $(p, q)$, DP budget $(\epsilon, \delta)$, and computational efficiency for exact recovery of the community labels. To this end, we present and analyze the associated information-theoretic tradeoffs for three broad classes of differentially private community recovery mechanisms: a) stability based mechanism; b) sampling based mechanisms; and c) graph perturbation mechanisms. Our main findings are that stability and sampling based mechanisms lead to a superior tradeoff between $(p,q)$ and the privacy budget $(\epsilon, \delta)$; however this comes at the expense of higher computational complexity. On the other hand, albeit low complexity, graph perturbation mechanisms require the privacy budget $\epsilon$ to scale as $\Omega(\log(n))$ for exact recovery. To the best of our knowledge, this is the first work to study the impact of privacy constraints on the fundamental limits for community detection.

Many approaches for optimizing decision making systems rely on gradient based methods requiring informative feedback from the environment. However, in the case where such feedback is sparse or uninformative, such approaches may result in poor performance. Derivative-free approaches such as Bayesian Optimization mitigate the dependency on the quality of gradient feedback, but are known to scale poorly in the high-dimension setting of complex decision making systems. This problem is exacerbated if the system requires interactions between several actors cooperating to accomplish a shared goal. To address the dimensionality challenge, we propose a compact multi-layered architecture modeling the dynamics of actor interactions through the concept of role. Additionally, we introduce Hessian-aware Bayesian Optimization to efficiently optimize the multi-layered architecture parameterized by a large number of parameters. Experimental results demonstrate that our method (HA-GP-UCB) works effectively on several benchmarks under resource constraints and malformed feedback settings.

Many applications, e.g. in content recommendation, sports, or recruitment, leverage the comparisons of alternatives to score those alternatives. The classical Bradley-Terry model and its variants have been widely used to do so. The historical model considers binary comparisons (victory or defeat) between alternatives, while more recent developments allow finer comparisons to be taken into account. In this article, we introduce a probabilistic model encompassing a broad variety of paired comparisons that can take discrete or continuous values. We do so by considering a well-behaved subset of the exponential family, which we call the family of generalized Bradley-Terry (GBT) models, as it includes the classical Bradley-Terry model and many of its variants. Remarkably, we prove that all GBT models are guaranteed to yield a strictly convex negative log-likelihood. Moreover, assuming a Gaussian prior on alternatives' scores, we prove that the maximum a posteriori (MAP) of GBT models, whose existence, uniqueness and fast computation are thus guaranteed, varies monotonically with respect to comparisons (the more A beats B, the better the score of A) and is Lipschitz-resilient with respect to each new comparison (a single new comparison can only have a bounded effect on all the estimated scores). These desirable properties make GBT models appealing for practical use. We illustrate some features of GBT models on simulations.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

Current state-of-the-art semantic role labeling (SRL) uses a deep neural network with no explicit linguistic features. However, prior work has shown that gold syntax trees can dramatically improve SRL decoding, suggesting the possibility of increased accuracy from explicit modeling of syntax. In this work, we present linguistically-informed self-attention (LISA): a neural network model that combines multi-head self-attention with multi-task learning across dependency parsing, part-of-speech tagging, predicate detection and SRL. Unlike previous models which require significant pre-processing to prepare linguistic features, LISA can incorporate syntax using merely raw tokens as input, encoding the sequence only once to simultaneously perform parsing, predicate detection and role labeling for all predicates. Syntax is incorporated by training one attention head to attend to syntactic parents for each token. Moreover, if a high-quality syntactic parse is already available, it can be beneficially injected at test time without re-training our SRL model. In experiments on CoNLL-2005 SRL, LISA achieves new state-of-the-art performance for a model using predicted predicates and standard word embeddings, attaining 2.5 F1 absolute higher than the previous state-of-the-art on newswire and more than 3.5 F1 on out-of-domain data, nearly 10% reduction in error. On ConLL-2012 English SRL we also show an improvement of more than 2.5 F1. LISA also out-performs the state-of-the-art with contextually-encoded (ELMo) word representations, by nearly 1.0 F1 on news and more than 2.0 F1 on out-of-domain text.

北京阿比特科技有限公司