For cyber-physical systems (CPS), including robotics and autonomous vehicles, mass deployment has been hindered by fatal errors that occur when operating in rare events. To replicate rare events such as vehicle crashes, many companies have created logging systems and employed crash reconstruction experts to meticulously recreate these valuable events in simulation. However, in these methods, "what if" questions are not easily formulated and answered. We present ScenarioNL, an AI System for creating scenario programs from natural language. Specifically, we generate these programs from police crash reports. Reports normally contain uncertainty about the exact details of the incidents which we represent through a Probabilistic Programming Language (PPL), Scenic. By using Scenic, we can clearly and concisely represent uncertainty and variation over CPS behaviors, properties, and interactions. We demonstrate how commonplace prompting techniques with the best Large Language Models (LLM) are incapable of reasoning about probabilistic scenario programs and generating code for low-resource languages such as Scenic. Our system is comprised of several LLMs chained together with several kinds of prompting strategies, a compiler, and a simulator. We evaluate our system on publicly available autonomous vehicle crash reports in California from the last five years and share insights into how we generate code that is both semantically meaningful and syntactically correct.
Bayesian Neural Networks (BNNs) provide superior estimates of uncertainty by generating an ensemble of predictive distributions. However, inference via ensembling is resource-intensive, requiring additional entropy sources to generate stochasticity which increases resource consumption. We introduce Bayes2IMC, an in-memory computing (IMC) architecture designed for binary Bayesian neural networks that leverage nanoscale device stochasticity to generate desired distributions. Our novel approach utilizes Phase-Change Memory (PCM) to harness inherent noise characteristics, enabling the creation of a binary neural network. This design eliminates the necessity for a pre-neuron Analog-to-Digital Converter (ADC), significantly improving power and area efficiency. We also develop a hardware-software co-optimized correction method applied solely on the logits in the final layer to reduce device-induced accuracy variations across deployments on hardware. Additionally, we devise a simple compensation technique that ensures no drop in classification accuracy despite conductance drift of PCM. We validate the effectiveness of our approach on the CIFAR-10 dataset with a VGGBinaryConnect model, achieving accuracy metrics comparable to ideal software implementations as well as results reported in the literature using other technologies. Finally, we present a complete core architecture and compare its projected power, performance, and area efficiency against an equivalent SRAM baseline, showing a $3.8$ to $9.6 \times$ improvement in total efficiency (in GOPS/W/mm$^2$) and a $2.2 $ to $5.6 \times$ improvement in power efficiency (in GOPS/W). In addition, the projected hardware performance of Bayes2IMC surpasses that of most of the BNN architectures based on memristive devices reported in the literature, and achieves up to $20\%$ higher power efficiency compared to the state-of-the-art.
Scaling deep learning to massive, diverse internet data has yielded remarkably general capabilities in visual and natural language understanding and generation. However, data has remained scarce and challenging to collect in robotics, seeing robot learning struggle to obtain similarly general capabilities. Promising Learning from Videos (LfV) methods aim to address the robotics data bottleneck by augmenting traditional robot data with large-scale internet video data. This video data offers broad foundational information regarding physical behaviour and the underlying physics of the world, and thus can be highly informative for a generalist robot. In this survey, we present a thorough overview of the emerging field of LfV. We outline fundamental concepts, including the benefits and challenges of LfV. We provide a comprehensive review of current methods for extracting knowledge from large-scale internet video, addressing key challenges in LfV, and boosting downstream robot and reinforcement learning via the use of video data. The survey concludes with a critical discussion of challenges and opportunities in LfV. Here, we advocate for scalable foundation model approaches that can leverage the full range of available internet video to improve the learning of robot policies and dynamics models. We hope this survey can inform and catalyse further LfV research, driving progress towards the development of general-purpose robots.
An efficient data structure is fundamental to meeting the growing demands in dynamic graph processing. However, the dual requirements for graph computation efficiency (with contiguous structures) and graph update efficiency (with linked list-like structures) present a conflict in the design principles of graph structures. After experimental studies of existing state-of-the-art dynamic graph structures, we observe that the overhead of cache misses accounts for a major portion of the graph computation time. This paper presents GastCoCo, a system with graph storage and coroutine-based prefetch co-design. By employing software prefetching via stackless coroutines and introducing a prefetch-friendly data structure CBList, GastCoCo significantly alleviates the performance degradation caused by cache misses. Our results show that GastCoCo outperforms state-of-the-art graph storage systems by 1.3x - 180x in graph updates and 1.4x - 41.1x in graph computation.
In the circuit model of quantum computing, amplitude amplification techniques can be used to find solutions to NP-hard problems defined on $n$-bits in time $\text{poly}(n) 2^{n/2}$. In this work, we investigate whether such general statements can be made for adiabatic quantum optimization, as provable results regarding its performance are mostly unknown. Although a lower bound of $\Omega(2^{n/2})$ has existed in such a setting for over a decade, a purely adiabatic algorithm with this running time has been absent. We show that adiabatic quantum optimization using an unstructured search approach results in a running time that matches this lower bound (up to a polylogarithmic factor) for a broad class of classical local spin Hamiltonians. For this, it is necessary to bound the spectral gap throughout the adiabatic evolution and compute beforehand the position of the avoided crossing with sufficient precision so as to adapt the adiabatic schedule accordingly. However, we show that the position of the avoided crossing is approximately given by a quantity that depends on the degeneracies and inverse gaps of the problem Hamiltonian and is NP-hard to compute even within a low additive precision. Furthermore, computing it exactly (or nearly exactly) is \#P-hard. Our work indicates a possible limitation of adiabatic quantum optimization algorithms, leaving open the question of whether provable Grover-like speed-ups can be obtained for any optimization problem using this approach.
Regression discontinuity design (RDD) is widely adopted for causal inference under intervention determined by a continuous variable. While one is interested in treatment effect heterogeneity by subgroups in many applications, RDD typically suffers from small subgroup-wise sample sizes, which makes the estimation results highly instable. To solve this issue, we introduce hierarchical RDD (HRDD), a hierarchical Bayes approach for pursuing treatment effect heterogeneity in RDD. A key feature of HRDD is to employ a pseudo-model based on a loss function to estimate subgroup-level parameters of treatment effects under RDD, and assign a hierarchical prior distribution to ''borrow strength'' from other subgroups. The posterior computation can be easily done by a simple Gibbs sampling, and the optimal bandwidth can be automatically selected by the Hyv\"{a}rinen scores for unnormalized models. We demonstrate the proposed HRDD through simulation and real data analysis, and show that HRDD provides much more stable point and interval estimation than separately applying the standard RDD method to each subgroup.
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Creating presentation materials requires complex multimodal reasoning skills to summarize key concepts and arrange them in a logical and visually pleasing manner. Can machines learn to emulate this laborious process? We present a novel task and approach for document-to-slide generation. Solving this involves document summarization, image and text retrieval, slide structure and layout prediction to arrange key elements in a form suitable for presentation. We propose a hierarchical sequence-to-sequence approach to tackle our task in an end-to-end manner. Our approach exploits the inherent structures within documents and slides and incorporates paraphrasing and layout prediction modules to generate slides. To help accelerate research in this domain, we release a dataset about 6K paired documents and slide decks used in our experiments. We show that our approach outperforms strong baselines and produces slides with rich content and aligned imagery.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.