In an era where asynchronous environments pose challenges to traditional self-positioning methods, we propose a new transformation to the existing paradigm. Traditionally, time of arrival (TOA) measurements require both microphone and source signals, limiting their applicability in environments with unknown emission time of human voices or sources and unknown recording start time of independent microphones. To address this issue, our research pioneers a mapping function capable of transforming both TOA and time difference of arrival (TDOA) formulas, demonstrating, for the first time, that they can be identical to one another. This implies that microphone signals alone are sufficient for self-positioning without the need for source signal waveforms, a groundbreaking advancement in the field that carries the potential to revolutionize self-positioning techniques, expanding their applicability in challenging environments. Supported by a robust mathematical proof and compelling experimental results, this research represents a timely and significant contribution to the current discourse in signal, and audio processing.
The reasoning capabilities of Large Language Models (LLMs) play a pivotal role in the realm of embodied artificial intelligence. Although there are effective methods like program-of-thought prompting for LLMs which uses programming language to tackle complex reasoning tasks, the specific impact of code data on the improvement of reasoning capabilities remains under-explored. To address this gap, we propose complexity-impacted reasoning score (CIRS), which combines structural and logical attributes, to measure the correlation between code and reasoning abilities. Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity by considering the difficulty and the cyclomatic complexity. Through an empirical analysis, we find not all code data of complexity can be learned or understood by LLMs. Optimal level of complexity is critical to the improvement of reasoning abilities by program-aided prompting. Then we design an auto-synthesizing and stratifying algorithm, and apply it to instruction generation for mathematical reasoning and code data filtering for code generation tasks. Extensive results demonstrates the effectiveness of our proposed approach. Code will be integrated into the EasyInstruct framework at //github.com/zjunlp/EasyInstruct.
Making moral judgments is an essential step toward developing ethical AI systems. Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality. These approaches have been criticized for potentially overgeneralizing a limited group of annotators' moral stances and lacking explainability. In contrast, top-down approaches make moral judgments grounded in a set of principles. However, it remains conceptual due to the incapability of previous language models and the unsolved debate among moral principles. In this study, we propose a flexible framework to steer Large Language Models (LLMs) to perform moral reasoning with well-established moral theories from interdisciplinary research. The theory-guided top-down framework can incorporate various moral theories. Our experiments demonstrate the effectiveness of the proposed framework on datasets derived from moral theories. Furthermore, we show the alignment between different moral theories and existing morality datasets. Our analysis exhibits the potentials and flaws in existing resources (models and datasets) in developing explainable moral judgment-making systems.
Transformers have emerged as the cornerstone of state-of-the-art natural language processing models, showcasing exceptional performance across a wide range of AI applications. However, the memory demands posed by the self-attention mechanism and the large feedforward network in Transformers limit their ability to handle long sequences, thereby creating challenges for tasks involving multiple long sequences or long-term dependencies. We present a distinct approach, Blockwise Parallel Transformer (BPT), that leverages blockwise computation of self-attention and feedforward network fusion to minimize memory costs. By processing longer input sequences while maintaining memory efficiency, BPT enables training sequences 32 times longer than vanilla Transformers and up to 4 times longer than previous memory-efficient methods. Extensive experiments on language modeling and reinforcement learning tasks demonstrate the effectiveness of BPT in reducing memory requirements and improving performance.
Although Transformer has achieved great success in natural language process and computer vision, it has difficulty generalizing to medium and large-scale graph data for two important reasons: (i) High complexity. (ii) Failing to capture the complex and entangled structure information. In graph representation learning, Graph Neural Networks(GNNs) can fuse the graph structure and node attributes but have limited receptive fields. Therefore, we question whether can we combine Transformers and GNNs to help each other. In this paper, we propose a new model named TransGNN where the Transformer layer and GNN layer are used alternately to improve each other. Specifically, to expand the receptive field and disentangle the information aggregation from edges, we propose using Transformer to aggregate more relevant nodes' information to improve the message passing of GNNs. Besides, to capture the graph structure information, we utilize positional encoding and make use of the GNN layer to fuse the structure into node attributes, which improves the Transformer in graph data. We also propose to sample the most relevant nodes for Transformer and two efficient samples update strategies to lower the complexity. At last, we theoretically prove that TransGNN is more expressive than GNNs only with extra linear complexity. The experiments on eight datasets corroborate the effectiveness of TransGNN on node and graph classification tasks.
Knowledge graphs play a vital role in numerous artificial intelligence tasks, yet they frequently face the issue of incompleteness. In this study, we explore utilizing Large Language Models (LLM) for knowledge graph completion. We consider triples in knowledge graphs as text sequences and introduce an innovative framework called Knowledge Graph LLM (KG-LLM) to model these triples. Our technique employs entity and relation descriptions of a triple as prompts and utilizes the response for predictions. Experiments on various benchmark knowledge graphs demonstrate that our method attains state-of-the-art performance in tasks such as triple classification and relation prediction. We also find that fine-tuning relatively smaller models (e.g., LLaMA-7B, ChatGLM-6B) outperforms recent ChatGPT and GPT-4.
In this work, we introduce a "score-based assessment" framework for estimating the transferability of pre-trained speech models (PSMs) for fine-tuning target tasks. We leverage upon two representation theories, Bayesian likelihood estimation and optimal transport, to generate rank scores for the PSM candidates using the extracted representations. Our framework efficiently computes transferability scores without actual fine-tuning of candidate models or layers by making a temporal independent hypothesis. We evaluate some popular supervised speech models (e.g., Conformer RNN-Transducer) and self-supervised speech models (e.g., HuBERT) in cross-layer and cross-model settings using public data. Experimental results show a high Spearman's rank correlation and low $p$-value between our estimation framework and fine-tuning ground truth. Our proposed transferability framework requires less computational time and resources, making it a resource-saving and time-efficient approach for tuning speech foundation models.
The multimedia community has shown a significant interest in perceiving and representing the physical world with multimodal pretrained neural network models, and among them, the visual-language pertaining (VLP) is, currently, the most captivating topic. However, there have been few endeavors dedicated to the exploration of 1) whether essential linguistic knowledge (e.g., semantics and syntax) can be extracted during VLP, and 2) how such linguistic knowledge impact or enhance the multimodal alignment. In response, here we aim to elucidate the impact of comprehensive linguistic knowledge, including semantic expression and syntactic structure, on multimodal alignment. Specifically, we design and release the SNARE, the first large-scale multimodal alignment probing benchmark, to detect the vital linguistic components, e.g., lexical, semantic, and syntax knowledge, containing four tasks: Semantic structure, Negation logic, Attribute ownership, and Relationship composition. Based on our proposed probing benchmarks, our holistic analyses of five advanced VLP models illustrate that the VLP model: i) shows insensitivity towards complex syntax structures and relies on content words for sentence comprehension; ii) demonstrates limited comprehension of combinations between sentences and negations; iii) faces challenges in determining the presence of actions or spatial relationships within visual information and struggles with verifying the correctness of triple combinations. We make our benchmark and code available at \url{//github.com/WangFei-2019/SNARE/}.
Automatically disentangling an author's style from the content of their writing is a longstanding and possibly insurmountable problem in computational linguistics. At the same time, the availability of large text corpora furnished with author labels has recently enabled learning authorship representations in a purely data-driven manner for authorship attribution, a task that ostensibly depends to a greater extent on encoding writing style than encoding content. However, success on this surrogate task does not ensure that such representations capture writing style since authorship could also be correlated with other latent variables, such as topic. In an effort to better understand the nature of the information these representations convey, and specifically to validate the hypothesis that they chiefly encode writing style, we systematically probe these representations through a series of targeted experiments. The results of these experiments suggest that representations learned for the surrogate authorship prediction task are indeed sensitive to writing style. As a consequence, authorship representations may be expected to be robust to certain kinds of data shift, such as topic drift over time. Additionally, our findings may open the door to downstream applications that require stylistic representations, such as style transfer.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.