Change blindness is a phenomenon where an individual fails to notice alterations in a visual scene when a change occurs during a brief interruption or distraction. Understanding this phenomenon is specifically important for the technique that uses a visual stimulus, such as Virtual Reality (VR) or Augmented Reality (AR). Previous research had primarily focused on 2D environments or conducted limited controlled experiments in 3D immersive environments. In this paper, we design and conduct two formal user experiments to investigate the effects of different visual attention-disrupting conditions (Flickering and Head-Turning) and object alternative conditions (Removal, Color Alteration, and Size Alteration) on change blindness detection in VR and AR environments. Our results reveal that participants detected changes more quickly and had a higher detection rate with Flickering compared to Head-Turning. Furthermore, they spent less time detecting changes when an object disappeared compared to changes in color or size. Additionally, we provide a comparison of the results between VR and AR environments.
Implementing precise detection of oil leaks in peak load equipment through image analysis can significantly enhance inspection quality and ensure the system's safety and reliability. However, challenges such as varying shapes of oil-stained regions, background noise, and fluctuating lighting conditions complicate the detection process. To address this, the integration of logical rule-based discrimination into image recognition has been proposed. This approach involves recognizing the spatial relationships among objects to semantically segment images of oil spills using a Mask RCNN network. The process begins with histogram equalization to enhance the original image, followed by the use of Mask RCNN to identify the preliminary positions and outlines of oil tanks, the ground, and areas of potential oil contamination. Subsequent to this identification, the spatial relationships between these objects are analyzed. Logical rules are then applied to ascertain whether the suspected areas are indeed oil spills. This method's effectiveness has been confirmed by testing on images captured from peak power equipment in the field. The results indicate that this approach can adeptly tackle the challenges in identifying oil-contaminated areas, showing a substantial improvement in accuracy compared to existing methods.
Most studies to date that have examined demographic variations in face recognition accuracy have analyzed 1-to-1 matching accuracy, using images that could be described as "government ID quality". This paper analyzes the accuracy of 1-to-many facial identification across demographic groups, and in the presence of blur and reduced resolution in the probe image as might occur in "surveillance camera quality" images. Cumulative match characteristic curves (CMC) are not appropriate for comparing propensity for rank-one recognition errors across demographics, and so we use three metrics for our analysis: (1) the well-known d' metric between mated and non-mated score distributions, and introduced in this work, (2) absolute score difference between thresholds in the high-similarity tail of the non-mated and the low-similarity tail of the mated distribution, and (3) distribution of (mated - non-mated rank-one scores) across the set of probe images. We find that demographic variation in 1-to-many accuracy does not entirely follow what has been observed in 1-to-1 matching accuracy. Also, different from 1-to-1 accuracy, demographic comparison of 1-to-many accuracy can be affected by different numbers of identities and images across demographics. More importantly, we show that increased blur in the probe image, or reduced resolution of the face in the probe image, can significantly increase the false positive identification rate. And we show that the demographic variation in these high blur or low resolution conditions is much larger for male / female than for African-American / Caucasian. The point that 1-to-many accuracy can potentially collapse in the context of processing "surveillance camera quality" probe images against a "government ID quality" gallery is an important one.
Fast Hough transform is a widely used algorithm in pattern recognition. The algorithm relies on approximating lines using a specific discrete line model called dyadic lines. The worst-case deviation of a dyadic line from the ideal line it used to construct grows as $O(log(n))$, where $n$ is the linear size of the image. But few lines actually reach the worst-case bound. The present paper addresses a statistical analysis of the deviation of a dyadic line from its ideal counterpart. Specifically, our findings show that the mean deviation is zero, and the variance grows as $O(log(n))$. As $n$ increases, the distribution of these (suitably normalized) deviations converges towards a normal distribution with zero mean and a small variance. This limiting result makes an essential use of ergodic theory.
In this critical survey, we analyze typical claims on the relationship between explainable AI (XAI) and fairness to disentangle the multidimensional relationship between these two concepts. Based on a systematic literature review and a subsequent qualitative content analysis, we identify seven archetypal claims from 175 papers on the alleged fairness benefits of XAI. We present crucial caveats with respect to these claims and provide an entry point for future discussions around the potentials and limitations of XAI for specific fairness desiderata. While the literature often suggests XAI to be an enabler for several fairness desiderata, we notice a divide between these desiderata and the capabilities of XAI. We encourage to conceive XAI as one of many tools to approach the multidimensional, sociotechnical challenge of algorithmic fairness and to be more specific about how exactly what kind of XAI method enables whom to address which fairness desideratum.
Large Language Models (LLMs) employing Chain-of-Thought (CoT) prompting have broadened the scope for improving multi-step reasoning capabilities. Usually, answer calibration strategies such as step-level or path-level calibration play a vital role in multi-step reasoning. While effective, there remains a significant gap in our understanding of the key factors that drive their success. In this paper, we break down the design of recent answer calibration strategies and present a unified view which establishes connections between them. We then conduct a thorough evaluation on these strategies from a unified view, systematically scrutinizing step-level and path-level answer calibration across multiple paths. Our study holds the potential to illuminate key insights for optimizing multi-step reasoning with answer calibration.
The motivation for this paper is to detect when an irreducible projective variety V is not toric. We do this by analyzing a Lie group and a Lie algebra associated to V. If the dimension of V is strictly less than the dimension of the above mentioned objects, then V is not a toric variety. We provide an algorithm to compute the Lie algebra of an irreducible variety and use it to provide examples of non-toric statistical models in algebraic statistics.
Machine Translation (MT) continues to improve in quality and adoption, yet the inadvertent perpetuation of gender bias remains a significant concern. Despite numerous studies into gender bias in translations from gender-neutral languages such as Turkish into more strongly gendered languages like English, there are no benchmarks for evaluating this phenomenon or for assessing mitigation strategies. To address this gap, we introduce GATE X-E, an extension to the GATE (Rarrick et al., 2023) corpus, that consists of human translations from Turkish, Hungarian, Finnish, and Persian into English. Each translation is accompanied by feminine, masculine, and neutral variants for each possible gender interpretation. The dataset, which contains between 1250 and 1850 instances for each of the four language pairs, features natural sentences with a wide range of sentence lengths and domains, challenging translation rewriters on various linguistic phenomena. Additionally, we present an English gender rewriting solution built on GPT-3.5 Turbo and use GATE X-E to evaluate it. We open source our contributions to encourage further research on gender debiasing.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.