Next-generation communication technology will be fueled on the cooperation of terrestrial networks with nonterrestrial networks (NTNs) that contain mega-constellations of high-altitude platform stations and low-Earth orbit satellites. On the other hand, humanity has embarked on a long road to establish new habitats on other planets. This deems the cooperation of NTNs with deep space networks (DSNs) necessary. In this regard, we propose the use of reconfigurable intelligent surfaces (RISs) to improve and escalate this collaboration owing to the fact that they perfectly match with the size, weight, and power restrictions of the operational environment of space. A comprehensive framework of RIS-assisted non-terrestrial and interplanetary communications is presented by pinpointing challenges, use cases, and open issues. Furthermore, the performance of RIS-assisted NTNs under environmental effects such as solar scintillation and satellite drag is discussed through simulation results.
The conventional approach to data-driven inversion framework is based on Gaussian statistics that presents serious difficulties, especially in the presence of outliers in the measurements. In this work, we present maximum likelihood estimators associated with generalized Gaussian distributions in the context of R\'enyi, Tsallis and Kaniadakis statistics. In this regard, we analytically analyse the outlier-resistance of each proposal through the so-called influence function. In this way, we formulate inverse problems by constructing objective functions linked to the maximum likelihood estimators. To demonstrate the robustness of the generalized methodologies, we consider an important geophysical inverse problem with high noisy data with spikes. The results reveal that the best data inversion performance occurs when the entropic index from each generalized statistic is associated with objective functions proportional to the inverse of the error amplitude. We argue that in such a limit the three approaches are resistant to outliers and are also equivalent, which suggests a lower computational cost for the inversion process due to the reduction of numerical simulations to be performed and the fast convergence of the optimization process.
The coexistence of different Radio Access Technologies (RATs) in the same area has enabled the researchers to get profit from the available networks by the selection of the best RAT at each moment to satisfy the user requirements. The challenge is to achieve the Always Best Connected (ABC) concept; the main issue is the automatic choice of the suitable Radio Access Technology (RAT) from the list of the available RATs. This decision is called network selection (NS). In this paper, we propose a modified Simple Additive Weigh (modified-SAW) function to deal with the drawbacks of the existing solutions. Indeed, the existing Multiple Attribute Decision Making (MADM) methods suffer mainly from the famous problem of rank reversal once an alternative is added or removed, other problems occur in the legacy MADMs. We modify the SAW method intelligently and we use it to solve the NS problem. Finally, we compare the performance of our solution with the previous works in different scenarios; the simulations show that our proposal outperforms the other existing methods
This paper investigates the interference nulling capability of reconfigurable intelligent surface (RIS) in a multiuser environment where multiple single-antenna transceivers communicate simultaneously in a shared spectrum. From a theoretical perspective, we show that when the channels between the RIS and the transceivers have line-of-sight and the direct paths are blocked, it is possible to adjust the phases of the RIS elements to null out all the interference completely and to achieve the maximum $K$ degrees-of-freedom (DoF) in the overall $K$-user interference channel, provided that the number of RIS elements exceeds some finite value that depends on $K$. Algorithmically, for any fixed channel realization we formulate the interference nulling problem as a feasibility problem, and propose an alternating projection algorithm to efficiently solve the resulting nonconvex problem with local convergence guarantee. Numerical results show that the proposed alternating projection algorithm can null all the interference if the number of RIS elements is only slightly larger than a threshold of $2K(K-1)$. For the practical sum-rate maximization objective, this paper proposes to use the zero-forcing solution obtained from alternating projection as an initial point for subsequent Riemannian conjugate gradient optimization and shows that it has a significant performance advantage over random initializations. For the objective of maximizing the minimum rate, this paper proposes a subgradient projection method which is capable of achieving excellent performance at low complexity.
This communication is about an application of image forensics where we use camera sensor fingerprints to identify source camera (SCI: Source Camera Identification) in webcam/smartphone videos. Sensor or camera fingerprints are based on computing the intrinsic noise that is always present in this kind of sensors due to manufacturing imperfections. This is an unavoidable characteristic that links each sensor with its noise pattern. PRNU (Photo Response Non-Uniformity) has become the default technique to compute a camera fingerprint. There are many applications nowadays dealing with PRNU patterns for camera identification using still images. In this work we focus on video, first on webcam video and afterwards on smartphone video. Webcams and smartphones are the most used video cameras nowadays. Three possible methods for SCI are implemented and assessed in this work.
In optical diffraction tomography (ODT), the three-dimensional scattering potential of a microscopic object rotating around its center is recovered by a series of illuminations with coherent light. Reconstruction algorithms such as the filtered backpropagation require knowledge of the complex-valued wave at the measurement plane, whereas often only intensities, i.e., phaseless measurements, are available in practice. We propose a new reconstruction approach for ODT with unknown phase information based on three key ingredients. First, the light propagation is modeled using Born's approximation enabling us to use the Fourier diffraction theorem. Second, we stabilize the inversion of the non-uniform discrete Fourier transform via total variation regularization utilizing a primal-dual iteration, which also yields a novel numerical inversion formula for ODT with known phase. The third ingredient is a hybrid input-output scheme. We achieved convincing numerical results, which indicate that ODT with phaseless data is possible. The so-obtained 2D and 3D reconstructions are even comparable to the ones with known phase.
In future sixth-generation (6G) mobile networks, the Internet-of-Everything (IoE) is expected to provide extremely massive connectivity for small battery-powered devices. Indeed, massive devices with limited energy storage capacity impose persistent energy demand hindering the lifetime of communication networks. As a remedy, wireless energy transfer (WET) is a key technology to address these critical energy supply issues. On the other hand, cell-free (CF) massive multiple-input multiple-output (MIMO) systems offer an efficient network architecture to realize the roll-out of the IoE. In this article, we first propose the paradigm of reconfigurable intelligent surface (RIS)-aided CF massive MIMO systems for WET, including its potential application scenarios and system architecture. The four-stage transmission procedure is discussed and analyzed to illustrate the practicality of the architecture. Then we put forward and analyze the hardware design of RIS. Particularly, we discuss the three corresponding operating modes and the amalgamation of WET technology and RIS-aided CF massive MIMO. Representative simulation results are given to confirm the superior performance achieved by our proposed schemes. Also, we investigate the optimal location of deploying multiple RISs to achieve the best system performance. Finally, several important research directions of RIS-aided CF massive MIMO systems with WET are presented to inspire further potential investigation.
With the emergence of large-scale open online courses and online academic conferences, it has become increasingly feasible and convenient to access online educational resources. However, it is time consuming and challenging to effectively retrieve and present numerous lecture videos for common users. In this work, we propose a hierarchical visual interface for retrieving and summarizing lecture videos. Users can utilize the proposed interface to effectively explore the required video information through the results of the video summary generation in different layers. We retrieve the input keywords with the corresponding video layer with timestamps, a frame layer with slides, and the poster layer with summarization of the lecture videos. We verified the proposed interface with our user study by comparing it with other conventional interfaces. The results from our user study confirmed that the proposed interface can achieve high retrieval accuracy and good user experience.see video here //www.youtube.com/watch?v=zrnejwsOVpc .
One of the core envisions of the sixth-generation (6G) wireless networks is to accumulate artificial intelligence (AI) for autonomous controlling of the Internet of Everything (IoE). Particularly, the quality of IoE services delivery must be maintained by analyzing contextual metrics of IoE such as people, data, process, and things. However, the challenges incorporate when the AI model conceives a lake of interpretation and intuition to the network service provider. Therefore, this paper provides an explainable artificial intelligence (XAI) framework for quality-aware IoE service delivery that enables both intelligence and interpretation. First, a problem of quality-aware IoE service delivery is formulated by taking into account network dynamics and contextual metrics of IoE, where the objective is to maximize the channel quality index (CQI) of each IoE service user. Second, a regression problem is devised to solve the formulated problem, where explainable coefficients of the contextual matrices are estimated by Shapley value interpretation. Third, the XAI-enabled quality-aware IoE service delivery algorithm is implemented by employing ensemble-based regression models for ensuring the interpretation of contextual relationships among the matrices to reconfigure network parameters. Finally, the experiment results show that the uplink improvement rate becomes 42.43% and 16.32% for the AdaBoost and Extra Trees, respectively, while the downlink improvement rate reaches up to 28.57% and 14.29%. However, the AdaBoost-based approach cannot maintain the CQI of IoE service users. Therefore, the proposed Extra Trees-based regression model shows significant performance gain for mitigating the trade-off between accuracy and interpretability than other baselines.
In relation extraction for knowledge-based question answering, searching from one entity to another entity via a single relation is called "one hop". In related work, an exhaustive search from all one-hop relations, two-hop relations, and so on to the max-hop relations in the knowledge graph is necessary but expensive. Therefore, the number of hops is generally restricted to two or three. In this paper, we propose UHop, an unrestricted-hop framework which relaxes this restriction by use of a transition-based search framework to replace the relation-chain-based search one. We conduct experiments on conventional 1- and 2-hop questions as well as lengthy questions, including datasets such as WebQSP, PathQuestion, and Grid World. Results show that the proposed framework enables the ability to halt, works well with state-of-the-art models, achieves competitive performance without exhaustive searches, and opens the performance gap for long relation paths.
Model-based methods for recommender systems have been studied extensively in recent years. In systems with large corpus, however, the calculation cost for the learnt model to predict all user-item preferences is tremendous, which makes full corpus retrieval extremely difficult. To overcome the calculation barriers, models such as matrix factorization resort to inner product form (i.e., model user-item preference as the inner product of user, item latent factors) and indexes to facilitate efficient approximate k-nearest neighbor searches. However, it still remains challenging to incorporate more expressive interaction forms between user and item features, e.g., interactions through deep neural networks, because of the calculation cost. In this paper, we focus on the problem of introducing arbitrary advanced models to recommender systems with large corpus. We propose a novel tree-based method which can provide logarithmic complexity w.r.t. corpus size even with more expressive models such as deep neural networks. Our main idea is to predict user interests from coarse to fine by traversing tree nodes in a top-down fashion and making decisions for each user-node pair. We also show that the tree structure can be jointly learnt towards better compatibility with users' interest distribution and hence facilitate both training and prediction. Experimental evaluations with two large-scale real-world datasets show that the proposed method significantly outperforms traditional methods. Online A/B test results in Taobao display advertising platform also demonstrate the effectiveness of the proposed method in production environments.