Automated Guided Vehicles (AGVs) are widely adopted in various industries due to their efficiency and adaptability. However, safely deploying AGVs in dynamic environments remains a significant challenge. This paper introduces an online trajectory optimization framework, the Fast Safe Rectangular Corridor (FSRC), designed for AGVs in obstacle-rich settings. The primary challenge is efficiently planning trajectories that prioritize safety and collision avoidance. To tackle this challenge, the FSRC algorithm constructs convex regions, represented as rectangular corridors, to address obstacle avoidance constraints within an optimal control problem. This conversion from non-convex to box constraints improves the collision avoidance efficiency and quality. Additionally, the Modified Visibility Graph algorithm speeds up path planning, and a boundary discretization strategy expedites FSRC construction. The framework also includes a dynamic obstacle avoidance strategy for real-time adaptability. Our framework's effectiveness and superiority have been demonstrated in experiments, particularly in computational efficiency (see Fig. \ref{fig:case1} and \ref{fig:case23}). Compared to state-of-the-art frameworks, our trajectory planning framework significantly enhances computational efficiency, ranging from 1 to 2 orders of magnitude (see Table \ref{tab:res}). Notably, the FSRC algorithm outperforms other safe convex corridor-based methods, substantially improving computational efficiency by 1 to 2 orders of magnitude (see Table \ref{tab:FRSC}).
Compression schemes have been extensively used in Federated Learning (FL) to reduce the communication cost of distributed learning. While most approaches rely on a bounded variance assumption of the noise produced by the compressor, this paper investigates the use of compression and aggregation schemes that produce a specific error distribution, e.g., Gaussian or Laplace, on the aggregated data. We present and analyze different aggregation schemes based on layered quantizers achieving exact error distribution. We provide different methods to leverage the proposed compression schemes to obtain compression-for-free in differential privacy applications. Our general compression methods can recover and improve standard FL schemes with Gaussian perturbations such as Langevin dynamics and randomized smoothing.
Task and Motion Planning (TAMP) algorithms can generate plans that combine logic and motion aspects for robots. However, these plans are sensitive to interference and control errors. To make TAMP more applicable in real-world, we propose the generalized multi-level replanning TAMP framework(GMRF), blending the probabilistic completeness of sampling-based TAMP algorithm with the robustness of reactive replanning. GMRF generates an nominal plan from the initial state, then dynamically reconstructs this nominal plan in real-time, reorders robot manipulations. Following the logic-level adjustment, GMRF will try to replan a new motion path to ensure the updated plan is feasible at the motion level. Finally, we conducted real-world experiments involving stack and rearrange task domains. The result demonstrate GMRF's ability to swiftly complete tasks in scenarios with varying degrees of interference.
Graph Contrastive Learning (GCL) has shown superior performance in representation learning in graph-structured data. Despite their success, most existing GCL methods rely on prefabricated graph augmentation and homophily assumptions. Thus, they fail to generalize well to heterophilic graphs where connected nodes may have different class labels and dissimilar features. In this paper, we study the problem of conducting contrastive learning on homophilic and heterophilic graphs. We find that we can achieve promising performance simply by considering an asymmetric view of the neighboring nodes. The resulting simple algorithm, Asymmetric Contrastive Learning for Graphs (GraphACL), is easy to implement and does not rely on graph augmentations and homophily assumptions. We provide theoretical and empirical evidence that GraphACL can capture one-hop local neighborhood information and two-hop monophily similarity, which are both important for modeling heterophilic graphs. Experimental results show that the simple GraphACL significantly outperforms state-of-the-art graph contrastive learning and self-supervised learning methods on homophilic and heterophilic graphs. The code of GraphACL is available at //github.com/tengxiao1/GraphACL.
Root Cause Analysis (RCA) is becoming increasingly crucial for ensuring the reliability of microservice systems. However, performing RCA on modern microservice systems can be challenging due to their large scale, as they usually comprise hundreds of components, leading significant human effort. This paper proposes TraceDiag, an end-to-end RCA framework that addresses the challenges for large-scale microservice systems. It leverages reinforcement learning to learn a pruning policy for the service dependency graph to automatically eliminates redundant components, thereby significantly improving the RCA efficiency. The learned pruning policy is interpretable and fully adaptive to new RCA instances. With the pruned graph, a causal-based method can be executed with high accuracy and efficiency. The proposed TraceDiag framework is evaluated on real data traces collected from the Microsoft Exchange system, and demonstrates superior performance compared to state-of-the-art RCA approaches. Notably, TraceDiag has been integrated as a critical component in the Microsoft M365 Exchange, resulting in a significant improvement in the system's reliability and a considerable reduction in the human effort required for RCA.
Visual Relation Extraction (VRE) is a powerful means of discovering relationships between entities within visually-rich documents. Existing methods often focus on manipulating entity features to find pairwise relations, yet neglect the more fundamental structural information that links disparate entity pairs together. The absence of global structure information may make the model struggle to learn long-range relations and easily predict conflicted results. To alleviate such limitations, we propose a GlObal Structure knowledge-guided relation Extraction (GOSE) framework. GOSE initiates by generating preliminary relation predictions on entity pairs extracted from a scanned image of the document. Subsequently, global structural knowledge is captured from the preceding iterative predictions, which are then incorporated into the representations of the entities. This "generate-capture-incorporate" cycle is repeated multiple times, allowing entity representations and global structure knowledge to be mutually reinforced. Extensive experiments validate that GOSE not only outperforms existing methods in the standard fine-tuning setting but also reveals superior cross-lingual learning capabilities; indeed, even yields stronger data-efficient performance in the low-resource setting. The code for GOSE will be available at //github.com/chenxn2020/GOSE.
Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.
In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
Automatic License Plate Recognition (ALPR) has been a frequent topic of research due to many practical applications. However, many of the current solutions are still not robust in real-world situations, commonly depending on many constraints. This paper presents a robust and efficient ALPR system based on the state-of-the-art YOLO object detection. The Convolutional Neural Networks (CNNs) are trained and fine-tuned for each ALPR stage so that they are robust under different conditions (e.g., variations in camera, lighting, and background). Specially for character segmentation and recognition, we design a two-stage approach employing simple data augmentation tricks such as inverted License Plates (LPs) and flipped characters. The resulting ALPR approach achieved impressive results in two datasets. First, in the SSIG dataset, composed of 2,000 frames from 101 vehicle videos, our system achieved a recognition rate of 93.53% and 47 Frames Per Second (FPS), performing better than both Sighthound and OpenALPR commercial systems (89.80% and 93.03%, respectively) and considerably outperforming previous results (81.80%). Second, targeting a more realistic scenario, we introduce a larger public dataset, called UFPR-ALPR dataset, designed to ALPR. This dataset contains 150 videos and 4,500 frames captured when both camera and vehicles are moving and also contains different types of vehicles (cars, motorcycles, buses and trucks). In our proposed dataset, the trial versions of commercial systems achieved recognition rates below 70%. On the other hand, our system performed better, with recognition rate of 78.33% and 35 FPS.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.
Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.