Recently, with the rapid deployment of service APIs, personalized service recommendations have played a paramount role in the growth of the e-commerce industry. Quality-of-Service (QoS) parameters determining the service performance, often used for recommendation, fluctuate over time. Thus, the QoS prediction is essential to identify a suitable service among functionally equivalent services over time. The contemporary temporal QoS prediction methods hardly achieved the desired accuracy due to various limitations, such as the inability to handle data sparsity and outliers and capture higher-order temporal relationships among user-service interactions. Even though some recent recurrent neural-network-based architectures can model temporal relationships among QoS data, prediction accuracy degrades due to the absence of other features (e.g., collaborative features) to comprehend the relationship among the user-service interactions. This paper addresses the above challenges and proposes a scalable strategy for Temporal QoS Prediction using Multi-source Collaborative-Features (TPMCF), achieving high prediction accuracy and faster responsiveness. TPMCF combines the collaborative-features of users/services by exploiting user-service relationship with the spatio-temporal auto-extracted features by employing graph convolution and transformer encoder with multi-head self-attention. We validated our proposed method on WS-DREAM-2 datasets. Extensive experiments showed TPMCF outperformed major state-of-the-art approaches regarding prediction accuracy while ensuring high scalability and reasonably faster responsiveness.
In autonomous driving, LiDAR and radar play important roles in the perception of the surrounding environment. LiDAR provides accurate 3D spatial sensing information but cannot work in adverse weather like fog. On the other hand, the radar signal can be diffracted when encountering raindrops or mist particles thanks to its wavelength, but it suffers from large noise. Recent state-of-the-art works reveal that fusion of radar and LiDAR can lead to robust detection in adverse weather. The existing works adopt convolutional neural network architecture to extract features from each sensor data, then align and aggregate the two branch features to predict object detection results. However, these methods have low accuracy of bounding box estimations due to a simple design of label assignment and fusion strategies. In this paper, we propose a bird's-eye view fusion learning-based anchor box-free object detection system, which fuses the feature derived from the radar range-azimuth heatmap and the LiDAR point cloud to estimate possible objects. Different label assignment strategies have been designed to facilitate the consistency between the classification of foreground or background anchor points and the corresponding bounding box regressions. Furthermore, the performance of the proposed object detector is further enhanced by employing a novel interactive transformer module. The superior performance of the methods proposed in this paper has been demonstrated using the recently published Oxford Radar RobotCar dataset. Our system's average precision significantly outperforms the state-of-the-art method by 13.1% and 19.0% at IoU of 0.8 under 'Clear+Foggy' training conditions for 'Clear' and 'Foggy' testing, respectively.
3D editing plays a crucial role in many areas such as gaming and virtual reality. Traditional 3D editing methods, which rely on representations like meshes and point clouds, often fall short in realistically depicting complex scenes. On the other hand, methods based on implicit 3D representations, like Neural Radiance Field (NeRF), render complex scenes effectively but suffer from slow processing speeds and limited control over specific scene areas. In response to these challenges, our paper presents GaussianEditor, an innovative and efficient 3D editing algorithm based on Gaussian Splatting (GS), a novel 3D representation. GaussianEditor enhances precision and control in editing through our proposed Gaussian semantic tracing, which traces the editing target throughout the training process. Additionally, we propose Hierarchical Gaussian splatting (HGS) to achieve stabilized and fine results under stochastic generative guidance from 2D diffusion models. We also develop editing strategies for efficient object removal and integration, a challenging task for existing methods. Our comprehensive experiments demonstrate GaussianEditor's superior control, efficacy, and rapid performance, marking a significant advancement in 3D editing. Project Page: //buaacyw.github.io/gaussian-editor/
Vision Transformers have received significant attention due to their impressive performance in many vision tasks. While the token mixer or attention block has been studied in great detail, the channel mixer or feature mixing block (FFN or MLP) has not been explored in depth albeit it accounts for a bulk of the parameters and computation in a model. In this work, we study whether sparse feature mixing can replace the dense connections and confirm this with a block diagonal MLP structure that improves the accuracy by supporting larger expansion ratios. To improve the feature clusters formed by this structure and thereby further improve the accuracy, a lightweight, parameter-free, channel covariance attention (CCA) mechanism is introduced as a parallel branch during training. This design of CCA enables gradual feature mixing across channel groups during training whose contribution decays to zero as the training progresses to convergence. This allows the CCA block to be discarded during inference, thus enabling enhanced performance with no additional computational cost. The resulting $\textit{Scalable CHannEl MixEr}$ (SCHEME) can be plugged into any ViT architecture to obtain a gamut of models with different trade-offs between complexity and performance by controlling the block diagonal structure size in the MLP. This is shown by the introduction of a new family of SCHEMEformer models. Experiments on image classification, object detection, and semantic segmentation, with different ViT backbones, consistently demonstrate substantial accuracy gains over existing designs, especially under lower FLOPs regimes. For example, the SCHEMEformer establishes a new SOTA of 79.7% accuracy for ViTs using pure attention mixers on ImageNet-1K at 1.77G FLOPs.
We present DreamAvatar, a text-and-shape guided framework for generating high-quality 3D human avatars with controllable poses. While encouraging results have been reported by recent methods on text-guided 3D common object generation, generating high-quality human avatars remains an open challenge due to the complexity of the human body's shape, pose, and appearance. We propose DreamAvatar to tackle this challenge, which utilizes a trainable NeRF for predicting density and color for 3D points and pretrained text-to-image diffusion models for providing 2D self-supervision. Specifically, we leverage the SMPL model to provide shape and pose guidance for the generation. We introduce a dual-observation-space design that involves the joint optimization of a canonical space and a posed space that are related by a learnable deformation field. This facilitates the generation of more complete textures and geometry faithful to the target pose. We also jointly optimize the losses computed from the full body and from the zoomed-in 3D head to alleviate the common multi-face ''Janus'' problem and improve facial details in the generated avatars. Extensive evaluations demonstrate that DreamAvatar significantly outperforms existing methods, establishing a new state-of-the-art for text-and-shape guided 3D human avatar generation.
Existing one-shot 4D head synthesis methods usually learn from monocular videos with the aid of 3DMM reconstruction, yet the latter is evenly challenging which restricts them from reasonable 4D head synthesis. We present a method to learn one-shot 4D head synthesis via large-scale synthetic data. The key is to first learn a part-wise 4D generative model from monocular images via adversarial learning, to synthesize multi-view images of diverse identities and full motions as training data; then leverage a transformer-based animatable triplane reconstructor to learn 4D head reconstruction using the synthetic data. A novel learning strategy is enforced to enhance the generalizability to real images by disentangling the learning process of 3D reconstruction and reenactment. Experiments demonstrate our superiority over the prior art.
Though LLMs are capable of generating plausible programs, it's challenging to interact with the LLMs further to revise the program, especially if the user's specific requirements are different from the initial proposal. In this paper, we introduce ANPL, an interactive programming system that ensures users can always refine the generated code towards their specific programmatic intents via structured decompositions. Borrowing the paradigm of sketching from program synthesis, an ANPL program consists of a set of input-outputs that it must satisfy, a ``sketch'' -- control/data flow expressed in precise code (e.g. Python), and ``holes'' -- sub-modules to be implemented by the LLM specified with natural language. The user revises an ANPL program by either modifying the sketch, changing the language used to describe the holes, or providing additional input-outputs to a particular hole, turning it into a sub-ANPL program that can be solved recursively. This workflow allows the users to offload programming burdens to the LLM as much as possible while retaining the ability to pinpoint and resolve bugs locally, without exposing the rest of the program to the LLM. We deploy ANPL on the Abstraction and Reasoning Corpus (ARC), a set of unique tasks that are challenging for state-of-the-art AI systems, showing it outperforms baseline programming systems that (a) without the ability to decompose tasks interactively and (b) without the guarantee that the modules can be correctly composed together. Additional evaluations on APPS, HumanEval, and real-world programming tasks have validated that the ANPL framework is applicable to multiple programming domains. We release the ANPL solutions to the ARC tasks as a dataset, providing insights into how humans decompose novel tasks programmatically. See our code at //iprc-dip.github.io/ANPL/.
We are witnessing rapid progress in automatically generating and manipulating 3D assets due to the availability of pretrained text-image diffusion models. However, time-consuming optimization procedures are required for synthesizing each sample, hindering their potential for democratizing 3D content creation. Conversely, 3D diffusion models now train on million-scale 3D datasets, yielding high-quality text-conditional 3D samples within seconds. In this work, we present SPiC-E - a neural network that adds structural guidance to 3D diffusion models, extending their usage beyond text-conditional generation. At its core, our framework introduces a cross-entity attention mechanism that allows for multiple entities (in particular, paired input and guidance 3D shapes) to interact via their internal representations within the denoising network. We utilize this mechanism for learning task-specific structural priors in 3D diffusion models from auxiliary guidance shapes. We show that our approach supports a variety of applications, including 3D stylization, semantic shape editing and text-conditional abstraction-to-3D, which transforms primitive-based abstractions into highly-expressive shapes. Extensive experiments demonstrate that SPiC-E achieves SOTA performance over these tasks while often being considerably faster than alternative methods. Importantly, this is accomplished without tailoring our approach for any specific task.
Neural network training is inherently sequential where the layers finish the forward propagation in succession, followed by the calculation and back-propagation of gradients (based on a loss function) starting from the last layer. The sequential computations significantly slow down neural network training, especially the deeper ones. Prediction has been successfully used in many areas of computer architecture to speed up sequential processing. Therefore, we propose ADA-GP, which uses gradient prediction adaptively to speed up deep neural network (DNN) training while maintaining accuracy. ADA-GP works by incorporating a small neural network to predict gradients for different layers of a DNN model. ADA-GP uses a novel tensor reorganization method to make it feasible to predict a large number of gradients. ADA-GP alternates between DNN training using backpropagated gradients and DNN training using predicted gradients. ADA-GP adaptively adjusts when and for how long gradient prediction is used to strike a balance between accuracy and performance. Last but not least, we provide a detailed hardware extension in a typical DNN accelerator to realize the speed up potential from gradient prediction. Our extensive experiments with fifteen DNN models show that ADA-GP can achieve an average speed up of 1.47X with similar or even higher accuracy than the baseline models. Moreover, it consumes, on average, 34% less energy due to reduced off-chip memory accesses compared to the baseline accelerator.
We are witnessing rapid progress in automatically generating and manipulating 3D assets due to the availability of pretrained text-image diffusion models. However, time-consuming optimization procedures are required for synthesizing each sample, hindering their potential for democratizing 3D content creation. Conversely, 3D diffusion models now train on million-scale 3D datasets, yielding high-quality text-conditional 3D samples within seconds. In this work, we present SPiC-E - a neural network that adds structural guidance to 3D diffusion models, extending their usage beyond text-conditional generation. At its core, our framework introduces a cross-entity attention mechanism that allows for multiple entities (in particular, paired input and guidance 3D shapes) to interact via their internal representations within the denoising network. We utilize this mechanism for learning task-specific structural priors in 3D diffusion models from auxiliary guidance shapes. We show that our approach supports a variety of applications, including 3D stylization, semantic shape editing and text-conditional abstraction-to-3D, which transforms primitive-based abstractions into highly-expressive shapes. Extensive experiments demonstrate that SPiC-E achieves SOTA performance over these tasks while often being considerably faster than alternative methods. Importantly, this is accomplished without tailoring our approach for any specific task.
In aerial combat, dogfighting poses intricate challenges that demand an understanding of both strategic maneuvers and the aerodynamics of agile fighter aircraft. In this paper, we introduce TempFuser, a novel long short-term temporal fusion transformer designed to learn tactical and agile flight maneuvers in aerial dogfights. Our approach employs two distinct LSTM-based input embeddings to encode long-term sparse and short-term dense state representations. By integrating these embeddings through a transformer encoder, our model captures the tactics and agility of fighter jets, enabling it to generate end-to-end flight commands that secure dominant positions and outmaneuver the opponent. After extensive training against various types of opponent aircraft in a high-fidelity flight simulator, our model successfully learns to perform complex fighter maneuvers, consistently outperforming several baseline models. Notably, our model exhibits human-like strategic maneuvers even when facing adversaries with superior specifications, all without relying on explicit prior knowledge. Moreover, it demonstrates robust pursuit performance in challenging supersonic and low-altitude environments. Demo videos are available at //sites.google.com/view/tempfuser.