The prediction of valence from speech is an important, but challenging problem. The externalization of valence in speech has speaker-dependent cues, which contribute to performances that are often significantly lower than the prediction of other emotional attributes such as arousal and dominance. A practical approach to improve valence prediction from speech is to adapt the models to the target speakers in the test set. Adapting a speech emotion recognition (SER) system to a particular speaker is a hard problem, especially with deep neural networks (DNNs), since it requires optimizing millions of parameters. This study proposes an unsupervised approach to address this problem by searching for speakers in the train set with similar acoustic patterns as the speaker in the test set. Speech samples from the selected speakers are used to create the adaptation set. This approach leverages transfer learning using pre-trained models, which are adapted with these speech samples. We propose three alternative adaptation strategies: unique speaker, oversampling and weighting approaches. These methods differ on the use of the adaptation set in the personalization of the valence models. The results demonstrate that a valence prediction model can be efficiently personalized with these unsupervised approaches, leading to relative improvements as high as 13.52%.
Representation is a key notion in neuroscience and artificial intelligence (AI). However, a longstanding philosophical debate highlights that specifying what counts as representation is trickier than it seems. With this brief opinion paper we would like to bring the philosophical problem of representation into attention and provide an implementable solution. We note that causal and teleological approaches often assumed by neuroscientists and engineers fail to provide a satisfactory account of representation. We sketch an alternative according to which representations correspond to inferred latent structures in the world, identified on the basis of conditional patterns of activation. These structures are assumed to have certain properties objectively, which allows for planning, prediction, and detection of unexpected events. We illustrate our proposal with the simulation of a simple neural network model. We believe this stronger notion of representation could inform future research in neuroscience and AI.
Recent work has designed methods to demonstrate that model updates in ASR training can leak potentially sensitive attributes of the utterances used in computing the updates. In this work, we design the first method to demonstrate information leakage about training data from trained ASR models. We design Noise Masking, a fill-in-the-blank style method for extracting targeted parts of training data from trained ASR models. We demonstrate the success of Noise Masking by using it in four settings for extracting names from the LibriSpeech dataset used for training a SOTA Conformer model. In particular, we show that we are able to extract the correct names from masked training utterances with 11.8% accuracy, while the model outputs some name from the train set 55.2% of the time. Further, we show that even in a setting that uses synthetic audio and partial transcripts from the test set, our method achieves 2.5% correct name accuracy (47.7% any name success rate). Lastly, we design Word Dropout, a data augmentation method that we show when used in training along with MTR, provides comparable utility as the baseline, along with significantly mitigating extraction via Noise Masking across the four evaluated settings.
Developing technology and changing lifestyles have made online grocery delivery applications an indispensable part of urban life. Since the beginning of the COVID-19 pandemic, the demand for such applications has dramatically increased, creating new competitors that disrupt the market. An increasing level of competition might prompt companies to frequently restructure their marketing and product pricing strategies. Therefore, identifying the change patterns in product prices and sales volumes would provide a competitive advantage for the companies in the marketplace. In this paper, we investigate alternative clustering methodologies to group the products based on the price patterns and sales volumes. We propose a novel distance metric that takes into account how product prices and sales move together rather than calculating the distance using numerical values. We compare our approach with traditional clustering algorithms, which typically rely on generic distance metrics such as Euclidean distance, and image clustering approaches that aim to group data by capturing its visual patterns. We evaluate the performances of different clustering algorithms using our custom evaluation metric as well as Calinski Harabasz and Davies Bouldin indices, which are commonly used internal validity metrics. We conduct our numerical study using a propriety price dataset from an online food and grocery delivery company, and the publicly available Favorita sales dataset. We find that our proposed clustering approach and image clustering both perform well for finding the products with similar price and sales patterns within large datasets.
Steady-state visual evoked potential (SSVEP) recognition methods are equipped with learning from the subject's calibration data, and they can achieve extra high performance in the SSVEP-based brain-computer interfaces (BCIs), however their performance deteriorate drastically if the calibration trials are insufficient. This study develops a new method to learn from limited calibration data and it proposes and evaluates a novel adaptive data-driven spatial filtering approach for enhancing SSVEPs detection. The spatial filter learned from each stimulus utilizes temporal information from the corresponding EEG trials. To introduce the temporal information into the overall procedure, an multitask learning approach, based on the bayesian framework, is adopted. The performance of the proposed method was evaluated into two publicly available benchmark datasets, and the results demonstrated that our method outperform competing methods by a significant margin.
Datasets that capture the connection between vision, language, and affection are limited, causing a lack of understanding of the emotional aspect of human intelligence. As a step in this direction, the ArtEmis dataset was recently introduced as a large-scale dataset of emotional reactions to images along with language explanations of these chosen emotions. We observed a significant emotional bias towards instance-rich emotions, making trained neural speakers less accurate in describing under-represented emotions. We show that collecting new data, in the same way, is not effective in mitigating this emotional bias. To remedy this problem, we propose a contrastive data collection approach to balance ArtEmis with a new complementary dataset such that a pair of similar images have contrasting emotions (one positive and one negative). We collected 260,533 instances using the proposed method, we combine them with ArtEmis, creating a second iteration of the dataset. The new combined dataset, dubbed ArtEmis v2.0, has a balanced distribution of emotions with explanations revealing more fine details in the associated painting. Our experiments show that neural speakers trained on the new dataset improve CIDEr and METEOR evaluation metrics by 20% and 7%, respectively, compared to the biased dataset. Finally, we also show that the performance per emotion of neural speakers is improved across all the emotion categories, significantly on under-represented emotions. The collected dataset and code are available at //artemisdataset-v2.org.
Dominant researches adopt supervised training for speaker extraction, while the scarcity of ideally clean corpus and channel mismatch problem are rarely considered. To this end, we propose speaker-aware mixture of mixtures training (SAMoM), utilizing the consistency of speaker identity among target source, enrollment utterance and target estimate to weakly supervise the training of a deep speaker extractor. In SAMoM, the input is constructed by mixing up different speaker-aware mixtures (SAMs), each contains multiple speakers with their identities known and enrollment utterances available. Informed by enrollment utterances, target speech is extracted from the input one by one, such that the estimated targets can approximate the original SAMs after a remix in accordance with the identity consistency. Moreover, using SAMoM in a semi-supervised setting with a certain amount of clean sources enables application in noisy scenarios. Extensive experiments on Libri2Mix show that the proposed method achieves promising results without access to any clean sources (11.06dB SI-SDRi). With a domain adaptation, our approach even outperformed supervised framework in a cross-domain evaluation on AISHELL-1.
In this paper, we propose a multi-domain learning model for action recognition. The proposed method inserts domain-specific adapters between layers of domain-independent layers of a backbone network. Unlike a multi-head network that switches classification heads only, our model switches not only the heads, but also the adapters for facilitating to learn feature representations universal to multiple domains. Unlike prior works, the proposed method is model-agnostic and doesn't assume model structures unlike prior works. Experimental results on three popular action recognition datasets (HMDB51, UCF101, and Kinetics-400) demonstrate that the proposed method is more effective than a multi-head architecture and more efficient than separately training models for each domain.
This paper addresses the difficulty of forecasting multiple financial time series (TS) conjointly using deep neural networks (DNN). We investigate whether DNN-based models could forecast these TS more efficiently by learning their representation directly. To this end, we make use of the dynamic factor graph (DFG) from that we enhance by proposing a novel variable-length attention-based mechanism to render it memory-augmented. Using this mechanism, we propose an unsupervised DNN architecture for multivariate TS forecasting that allows to learn and take advantage of the relationships between these TS. We test our model on two datasets covering 19 years of investment funds activities. Our experimental results show that our proposed approach outperforms significantly typical DNN-based and statistical models at forecasting their 21-day price trajectory.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.