We present a Multi-Instance Generation (MIG) task, simultaneously generating multiple instances with diverse controls in one image. Given a set of predefined coordinates and their corresponding descriptions, the task is to ensure that generated instances are accurately at the designated locations and that all instances' attributes adhere to their corresponding description. This broadens the scope of current research on Single-instance generation, elevating it to a more versatile and practical dimension. Inspired by the idea of divide and conquer, we introduce an innovative approach named Multi-Instance Generation Controller (MIGC) to address the challenges of the MIG task. Initially, we break down the MIG task into several subtasks, each involving the shading of a single instance. To ensure precise shading for each instance, we introduce an instance enhancement attention mechanism. Lastly, we aggregate all the shaded instances to provide the necessary information for accurately generating multiple instances in stable diffusion (SD). To evaluate how well generation models perform on the MIG task, we provide a COCO-MIG benchmark along with an evaluation pipeline. Extensive experiments were conducted on the proposed COCO-MIG benchmark, as well as on various commonly used benchmarks. The evaluation results illustrate the exceptional control capabilities of our model in terms of quantity, position, attribute, and interaction.
3D decomposition/segmentation still remains a challenge as large-scale 3D annotated data is not readily available. Contemporary approaches typically leverage 2D machine-generated segments, integrating them for 3D consistency. While the majority of these methods are based on NeRFs, they face a potential weakness that the instance/semantic embedding features derive from independent MLPs, thus preventing the segmentation network from learning the geometric details of the objects directly through radiance and density. In this paper, we propose ClusteringSDF, a novel approach to achieve both segmentation and reconstruction in 3D via the neural implicit surface representation, specifically Signal Distance Function (SDF), where the segmentation rendering is directly integrated with the volume rendering of neural implicit surfaces. Although based on ObjectSDF++, ClusteringSDF no longer requires the ground-truth segments for supervision while maintaining the capability of reconstructing individual object surfaces, but purely with the noisy and inconsistent labels from pre-trained models.As the core of ClusteringSDF, we introduce a high-efficient clustering mechanism for lifting the 2D labels to 3D and the experimental results on the challenging scenes from ScanNet and Replica datasets show that ClusteringSDF can achieve competitive performance compared against the state-of-the-art with significantly reduced training time.
PSALM is a powerful extension of the Large Multi-modal Model (LMM) to address the segmentation task challenges. To overcome the limitation of the LMM being limited to textual output, PSALM incorporates a mask decoder and a well-designed input schema to handle a variety of segmentation tasks. This schema includes images, task instructions, conditional prompts, and mask tokens, which enable the model to generate and classify segmentation masks effectively. The flexible design of PSALM supports joint training across multiple datasets and tasks, leading to improved performance and task generalization. PSALM achieves superior results on several benchmarks, such as RefCOCO/RefCOCO+/RefCOCOg, COCO Panoptic Segmentation, and COCO-Interactive, and further exhibits zero-shot capabilities on unseen tasks, such as open-vocabulary segmentation, generalized referring expression segmentation and video object segmentation, making a significant step towards a GPT moment in computer vision. Through extensive experiments, PSALM demonstrates its potential to transform the domain of image segmentation, leveraging the robust visual understanding capabilities of LMMs as seen in natural language processing. Code and models are available at //github.com/zamling/PSALM.
Face presentation attacks (FPA), also known as face spoofing, have brought increasing concerns to the public through various malicious applications, such as financial fraud and privacy leakage. Therefore, safeguarding face recognition systems against FPA is of utmost importance. Although existing learning-based face anti-spoofing (FAS) models can achieve outstanding detection performance, they lack generalization capability and suffer significant performance drops in unforeseen environments. Many methodologies seek to use auxiliary modality data (e.g., depth and infrared maps) during the presentation attack detection (PAD) to address this limitation. However, these methods can be limited since (1) they require specific sensors such as depth and infrared cameras for data capture, which are rarely available on commodity mobile devices, and (2) they cannot work properly in practical scenarios when either modality is missing or of poor quality. In this paper, we devise an accurate and robust MultiModal Mobile Face Anti-Spoofing system named M3FAS to overcome the issues above. The primary innovation of this work lies in the following aspects: (1) To achieve robust PAD, our system combines visual and auditory modalities using three commonly available sensors: camera, speaker, and microphone; (2) We design a novel two-branch neural network with three hierarchical feature aggregation modules to perform cross-modal feature fusion; (3). We propose a multi-head training strategy, allowing the model to output predictions from the vision, acoustic, and fusion heads, resulting in a more flexible PAD. Extensive experiments have demonstrated the accuracy, robustness, and flexibility of M3FAS under various challenging experimental settings. The source code and dataset are available at: //github.com/ChenqiKONG/M3FAS/
The majority of recent progress in Optical Music Recognition (OMR) has been achieved with Deep Learning methods, especially models following the end-to-end paradigm, reading input images and producing a linear sequence of tokens. Unfortunately, many music scores, especially piano music, cannot be easily converted to a linear sequence. This has led OMR researchers to use custom linearized encodings, instead of broadly accepted structured formats for music notation. Their diversity makes it difficult to compare the performance of OMR systems directly. To bring recent OMR model progress closer to useful results: (a) We define a sequential format called Linearized MusicXML, allowing to train an end-to-end model directly and maintaining close cohesion and compatibility with the industry-standard MusicXML format. (b) We create a dev and test set for benchmarking typeset OMR with MusicXML ground truth based on the OpenScore Lieder corpus. They contain 1,438 and 1,493 pianoform systems, each with an image from IMSLP. (c) We train and fine-tune an end-to-end model to serve as a baseline on the dataset and employ the TEDn metric to evaluate the model. We also test our model against the recently published synthetic pianoform dataset GrandStaff and surpass the state-of-the-art results.
Large Language Models (LLMs) have demonstrated impressive zero-shot capabilities and versatility in NLP tasks, however they sometimes fail to maintain crucial invariances for specific tasks. One example is permutation sensitivity, where LLMs' outputs may significantly vary depending on the order of the input options. While debiasing techniques can mitigate these issues, and yield better performance and reliability, they often come with a high computational cost at inference. This paper addresses this inefficiency at inference time. The aim is to distill the capabilities of a computationally intensive, debiased, teacher model into a more compact student model. We explore two variants of student models: one based on pure distillation, and the other on an error-correction approach for more complex tasks, where the student corrects a single biased decision from the teacher to achieve a debiased output. Our approach is general and can be applied to both black-box and white-box LLMs. Furthermore, we demonstrate that our compact, encoder-only student models can outperform their larger, biased teacher counterparts, achieving better results with significantly fewer parameters.
Graph Neural Networks (GNNs) have shown promising performance in various graph learning tasks, but at the cost of resource-intensive computations. The primary overhead of GNN update stems from graph propagation and weight transformation, both involving operations on graph-scale matrices. Previous studies attempt to reduce the computational budget by leveraging graph-level or network-level sparsification techniques, resulting in downsized graph or weights. In this work, we propose Unifews, which unifies the two operations in an entry-wise manner considering individual matrix elements, and conducts joint edge-weight sparsification to enhance learning efficiency. The entry-wise design of Unifews enables adaptive compression across GNN layers with progressively increased sparsity, and is applicable to a variety of architectural designs with on-the-fly operation simplification. Theoretically, we establish a novel framework to characterize sparsified GNN learning in view of a graph optimization process, and prove that Unifews effectively approximates the learning objective with bounded error and reduced computational load. We conduct extensive experiments to evaluate the performance of our method in diverse settings. Unifews is advantageous in jointly removing more than 90% of edges and weight entries with comparable or better accuracy than baseline models. The sparsification offers remarkable efficiency improvements including 10-20x matrix operation reduction and up to 100x acceleration in graph propagation time for the largest graph at the billion-edge scale.
In recent years, 3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities. To address these shortcomings, this paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input. We propose two innovative techniques:(1) Structured Volumetric Representation. We first arrange disorganized 3D Gaussian points as a structured form GaussianVolume. This transformation allows the capture of intricate texture details within a volume composed of a fixed number of Gaussians. To better optimize the representation of these details, we propose a unique pruning and densifying method named the Candidate Pool Strategy, enhancing detail fidelity through selective optimization. (2) Coarse-to-fine Generation Pipeline. To simplify the generation of GaussianVolume and empower the model to generate instances with detailed 3D geometry, we propose a coarse-to-fine pipeline. It initially constructs a basic geometric structure, followed by the prediction of complete Gaussian attributes. Our framework, GVGEN, demonstrates superior performance in qualitative and quantitative assessments compared to existing 3D generation methods. Simultaneously, it maintains a fast generation speed ($\sim$7 seconds), effectively striking a balance between quality and efficiency.
Recent advances in visual reasoning (VR), particularly with the aid of Large Vision-Language Models (VLMs), show promise but require access to large-scale datasets and face challenges such as high computational costs and limited generalization capabilities. Compositional visual reasoning approaches have emerged as effective strategies; however, they heavily rely on the commonsense knowledge encoded in Large Language Models (LLMs) to perform planning, reasoning, or both, without considering the effect of their decisions on the visual reasoning process, which can lead to errors or failed procedures. To address these challenges, we introduce HYDRA, a multi-stage dynamic compositional visual reasoning framework designed for reliable and incrementally progressive general reasoning. HYDRA integrates three essential modules: a planner, a Reinforcement Learning (RL) agent serving as a cognitive controller, and a reasoner. The planner and reasoner modules utilize an LLM to generate instruction samples and executable code from the selected instruction, respectively, while the RL agent dynamically interacts with these modules, making high-level decisions on selection of the best instruction sample given information from the historical state stored through a feedback loop. This adaptable design enables HYDRA to adjust its actions based on previous feedback received during the reasoning process, leading to more reliable reasoning outputs and ultimately enhancing its overall effectiveness. Our framework demonstrates state-of-the-art performance in various VR tasks on four different widely-used datasets.
The scaling of Large Language Models (LLMs) for retrieval-based tasks, particularly in Retrieval Augmented Generation (RAG), faces significant memory constraints, especially when fine-tuning extensive prompt sequences. Current open-source libraries support full-model inference and fine-tuning across multiple GPUs but fall short of accommodating the efficient parameter distribution required for retrieved context. Addressing this gap, we introduce a novel framework for PEFT-compatible fine-tuning of Llama-2 models, leveraging distributed training. Our framework uniquely utilizes JAX's just-in-time (JIT) compilation and tensor-sharding for efficient resource management, thereby enabling accelerated fine-tuning with reduced memory requirements. This advancement significantly improves the scalability and feasibility of fine-tuning LLMs for complex RAG applications, even on systems with limited GPU resources. Our experiments show more than 12x improvement in runtime compared to Hugging Face/DeepSpeed implementation with four GPUs while consuming less than half the VRAM per GPU.
There have been emerging research interest and advances in speech-to-speech translation (S2ST), translating utterances from one language to another. This work proposes Multitask Speech Language Model (MSLM), which is a decoder-only speech language model trained in a multitask setting. Without reliance on text training data, our model is able to support multilingual S2ST with speaker style preserved.